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The continuous functional calculus for arbitrary C∗-algebras

Rasmus Sylvester Bryder

This nugget will continue where [3] left o�, regarding the properties of the continuous functional
calculus. We will try to construct a valid extension of this calculus to any arbitrary C∗-algebras, and
not just unital ones as covered in the above source.

In order to �nd a way to discuss the continuous functional calculus for a non-unital C∗-algebra, then
to even consider it we cannot escape from the fact that we need to be able to work with a unit. This
of course implies that the unitization has to be part of the discussion, and once we have brought it
up we will try to wring loose of the claws that this extra structure has to grab us with. We know
beforehand that this is no suicide mission, so we will succeed (no need to wet the bed here).

1 The unitization

Throughout this section, A denotes a non-unital C∗-algebra.

In order to construct the unitization for A, we de�ne a map La : A → A for any a ∈ A given by
Lab = ab for b ∈ A. This map is clearly well-de�ned, linear and bounded with ‖La‖ ≤ ‖a‖. Hence
La belongs to the Banach algebra B(A) for all a ∈ A. Let Ã be the subset of B(A) given by

Ã = {La + λ1 | a ∈ A, λ ∈ C},

where 1 denotes the identity operator A → A, and de�ne a map Ω: A → Ã by Ω(a) = La.

Lemma 1. The map Ω is an isometric algebra homomorphism such that Ω(a) 6= 1 for all a ∈ A. Ã
is a subalgebra of B(A).

Proof. For a, b, c ∈ A and λ ∈ C, we have

(i) Ω(a+ b)(c) = La+bc = (a+ b)c = ac+ bc = Lac+ Lbc = (La + Lb)c = (Ω(a) + Ω(b))(c),

(ii) Ω(λa)(c) = Lλac = (λa)c = λ(ac) = (λLa)c = (λΩ(a))(c),

(iii) Ω(ab)(c) = Labc = (ab)c = a(bc) = La(Lbc) = Ω(a)(Ω(b)(c)) = (Ω(a)Ω(b))(c).

To see that Ω is an isometry, note that ‖Ω(a)‖ ≤ ‖a‖ and

‖a‖2 = ‖a∗‖2 = ‖aa∗‖ = ‖Ω(a)(a∗)‖ ≤ ‖Ω(a)‖‖a∗‖ = ‖Ω(a)‖‖a‖.

If there were an a ∈ A such that Ω(a) = 1, then for any b ∈ A we would have

ab = Ω(a)(b) = 1b = b.

Hence a is a left unit for A. The above equality also implies ab∗ = b∗ or ba∗ = b for all b ∈ A, so a∗ is
a right unit for A. Thus a = aa∗ = a∗, implying that a is a unit, contradicting the assumption that
A is non-unital. The �nal statement now follows from the fact that Ω and the map C→ Ã given by
λ 7→ λ1 are algebra homomorphisms.

Corollary 2. The map A× C→ Ã given by (a, λ) 7→ La + λ1 is a linear isomorphism.

Proof. Surjectivity and linearity is clear. If a1, a2 ∈ A and λ1, λ2 ∈ C satisfy La1 + λ11 = La2 + λ21,
then La1−a2 = (λ2 − λ1)1. If η = λ2 − λ1 were a non-zero number, we would have Lη−1(a1−a2) = 1,
contradicting the above lemma. Hence λ1 = λ2, so

‖a1 − a2‖ = ‖La1−a2‖ = ‖(λ2 − λ1)1‖ = 0

and hence a1 = a2.
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The above corollary in turn yields that the map ∗ : Ã → Ã given by (La + λ1)∗ = La∗ + λ1 is
well-de�ned, and one easily shows that it satis�es the properties of an involution. Hence Ã becomes
a normed ∗-algebra.

Proposition 3. For all s ∈ Ã we have ‖s∗s‖ = ‖s‖2.

Proof. Let a, x ∈ A and λ ∈ C. For any b ∈ A we have

(x∗a∗ + λx∗)b = x∗(a∗b+ λb) = x∗(La + λ1)∗b. (†)

This in turn implies

‖(La + λ1)x‖2 = ‖ax+ λx‖2

= ‖(ax+ λx)∗(ax+ λx)‖
= ‖(x∗a∗ + λx∗)(ax+ λx)‖
= ‖x∗(La + λ1)∗(La + λ1)x‖
≤ ‖x∗‖‖(La + λ1)∗(La + λ1)x‖ ≤ ‖(La + λ1)∗(La + λ1)‖‖x‖2,

using (†) at the fourth equality. Therefore

‖La + λ1‖2 ≤ ‖(La + λ1)∗(La + λ1)‖.

The above inequality implies

‖La + λ1‖2 ≤ ‖(La + λ1)∗‖‖La + λ1‖,

so ‖La + λ1‖ ≤ ‖(La + λ1)∗‖ = ‖La∗ + λ1‖. Replacing a by a∗ and λ by λ, we see that

‖La + λ1‖ = ‖(La + λ1)∗‖.

This �nally tells us that

‖La + λ1‖2 ≤ ‖(La + λ1)∗(La + λ1)‖ ≤ ‖(La + λ1)∗‖‖La + λ1‖ = ‖La + λ1‖2,

completing the proof.

Proposition 4. Let X be a Banach space with closed subspaces Y and Z. If Z is �nite-dimensional,
then Y + Z is a closed subspace of X.

Proof. Recall that the quotient space X/Y is a Banach space and that the quotient map π : X→ X/Y
is a linear contraction. Then π(Z) is a �nite-dimensional subspace of X/Y, so it must be closed.
Therefore π−1(π(Z)) is closed as well by continuity, but

x ∈ π−1(π(Z))⇔ π(x) = π(z) for some z ∈ Z

⇔ x− z = y for some z ∈ Z and y ∈ Y

⇔ x ∈ Y + Z.

Hence Y + Z is closed.

Corollary 5. Ã is a closed subset of B(A), making it a unital C∗-algebra.

Proof. Applying Proposition 4 to X = B(A), Y = Ω(A) and Z = C1 yields that Ã is closed. Hence Ã
is a Banach ∗-algebra satisfying the C∗-identity (Proposition 3), so it is a C∗-algebra with unit 1.

By Corollary 2, there is a linear isomorphism A× C → Ã. Using this isomorphism, we can de�ne a
multiplication, involution and norm on A×C such that it becomes a unital C∗-algebra in which A is
isometrically embedded by means of the map A → A×C given by a 7→ (a, 0). The multiplicative unit
of A × C is the element (0, 1). The C∗-algebra A × C is called the unitization of A, and to honour
the subset of B(A) that made it possible, we will denote it by Ã. The ∗-algebra operations in Ã are
therefore

(i) µ1(a1, λ1) + µ2(a2, λ2) = (µ1a1 + µ2a2, µ1λ1 + µ2λ2),

(ii) (a1, λ1)(a2, λ2) = (a1a2 + λ1a2 + λ2a1, λ1λ2) and

(iii) (a1, λ1)∗ = (a∗1, λ1)

for a1, a2 ∈ A and λ1, λ2, µ1, µ2 ∈ C. The norm is given by

‖(a, λ)‖ = sup{‖ax+ λx‖ |x ∈ A, ‖x‖ ≤ 1}.
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2 The continuous functional calculus, part I

We �rst take some time to construct the continuous functional calculus for unital C∗-algebras. If
A is a unital C∗-algebra, the spectrum σ(a) of an element a ∈ A consists of all the λ ∈ C such
that λ1A − a is not invertible. The space of non-zero multiplicative linear functionals A → C (also
called characters) is denoted by ∆(A). Any such is bounded with norm 1 and hence ∆(A) is a
weak∗-compact subset of A∗ by Alaoglu's theorem.

The Gelfand transform for the unital C∗-algebra A is the contractive algebra homomorphism Γ: A →
C(∆(A)) given by

Γ(a)(ϕ) = ϕ(a), a ∈ A, ϕ ∈ ∆(A).

If A is also commutative, we have that the range of Γ(a) for any a ∈ A is in fact σ(a). If A is a
commutative unital C∗-algebra, Γ is an isometric ∗-isomorphism.

Theorem 6. Let A be a unital C∗-algebra and let a ∈ A be normal. Then C∗(1A, a) is commutative,
and the character space M of C∗(1A, a) equipped with the weak∗ topology is homeomorphic to σ(a)
by the map Ψ: ϕ 7→ ϕ(a). Therefore the Gelfand transform becomes an isometric ∗-isomorphism
Γ: C∗(1A, a)→ C(σ(a)).

Proof. Omitted. See [3, Theorem 10.2].

De�nition 7. If A is a unital C∗-algebra and a ∈ A is normal, the inverse unital ∗-homomorphism
Γ−1 : C(σ(a)) → C∗(1A, a) is called the continuous functional calculus for a. For f ∈ C(σ(a)), we
de�ne f(a) = Γ−1(f).

It is common practice, but let us mention it anyway: if a is a normal element of a unital C∗-algebra
A and f ∈ C(Ω) for some subset σ(a) ⊆ Ω ⊆ C, we de�ne f(a) = f |σ(a)(a).

Theorem 8 (Properties of the continuous functional calculus for unital C∗-algebras). Let A be a
unital C∗-algebra and let a ∈ A. Then for all λ, µ ∈ C and f, g ∈ C(σ(a)) we have

(i) (λf + µg)(a) = λf(a) + µg(a).

(ii) (fg)(a) = f(a)g(a).

(iii) f(a) = f(a)∗.

(iv) If 1 denotes the identity map σ(a)→ σ(a), then 1(a) = a.

(v) If 1 denotes the constant function z 7→ 1 for z ∈ σ(a), then 1(a) = 1A.

(vi) If P : z 7→ p(z, z) is a complex polynomial in z and z with no constant term, then P (a) = p(a, a∗).

(vii) If Ω is a subset of C such that σ(a) ⊆ Ω and h ∈ C(Ω), then

‖h(a)‖ = sup
z∈σ(a)

|h(z)| ≤ sup
z∈Ω
|h(z)|.

(viii) σ(f(a)) = f(σ(a)).

(ix) If h ∈ C(f(σ(a)), then (h ◦ f)(a) = h(f(a)).

(x) If Φ is a unital ∗-homomorphism of A into another unital C∗-algebra B, then Φ(f(a)) = f(Φ(a)).

Proof. (i), (ii) and (iii) and (v) follow directly from the fact that the continuous functional calculus
is a unital ∗-homomorphism. As for (iv), note that Γ(a) is the identity map on σ(a); any z ∈ σ(a)
corresponds uniquely to a character ϕ ∈ ∆(C∗(1A, a)) such that ϕ(a) = Ψ(ϕ) = z. Under the
identi�cation of Theorem 6, we have

Γ(a)(z) = Γ(a)(ϕ) = ϕ(a) = z.

(vi) then follows from (i)-(v). (vii) is clear, since the continuous functional calculus is an isometry.

Since Γ−1 is a ∗-isomorphism, σ(f) = σ(f(a)). f − λ is invertible if and only if f(z) − λ 6= 0 for all
z ∈ σ(a); hence λ ∈ σ(f) if and only if f(z) = λ for some z ∈ σ(a) or λ ∈ f(σ(a)), so we conclude

σ(f(a)) = σ(f) = f(σ(a)),

and hence (viii).
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To prove (ix), note that g ◦ f ∈ C(σ(a)), so (g ◦ f)(a) is well-de�ned, and that f(a) = Γ−1(f) is
normal in A since f is. Hence g(f(a)) ∈ A is well-de�ned, as g ∈ C(σ(f(a)) by (viii). Take a sequence
(qn)n≥1 of complex polynomials in z and z such that qn → g uniformly on f(σ(a)) = σ(f(a)) by
Stone-Weierstrass' theorem. Then qn ◦ f → g ◦ f uniformly on σ(a), so

qn(f(a)) = (qn ◦ f)(a)→ (g ◦ f)(a)

in norm. To comprehend the �rst equality above, note that if qn(z) =
∑
λijz

izj then we have

(qn ◦ f)(z) =
∑

λijf(z)if(z)j .

The continuous functional calculus is a ∗-homomorphism and thus maps this function to

(qn ◦ f)(a) =
∑

λijf(a)i(f(a)∗)j = qn(f(a)).

Noting that qn(f(a))→ g(f(a)) in norm as well, (ix) follows.

For (x), note that b = Φ(a) is normal. As σ(b) ⊆ σ(a), we see that f(b) is a well-de�ned element
of C∗(1B, b) ⊆ B. Let (pn)n≥1 be a sequence of complex polynomials in z and z such that pn → f
uniformly on σ(a). Then pn(a)→ f(a) and pn(b)→ f(b) in norm, so we have

Φ(f(a)) = Φ
(

lim
n→∞

pn(a)
)

= lim
n→∞

Φ(pn(a)) = lim
n→∞

pn(b) = f(b),

since Φ is a unital ∗-homomorphism and hence continuous.

We will see later that B in (x) does not have to be unital, as long as we modify the assumptions a
little. Oh, and about that...

Remark 1. If we remove the condition in (x) that Φ is unital, we run into some problems. For
instance, let p ∈ B(`2(N)) be a �nite rank projection and de�ne Φ: C→ B(`2) by Φ(λ) = λp. Then p
isn't invertible, so that 0 ∈ σ(p), but clearly 0 /∈ σ(1) = {1}. Hence the equation f(Φ(1)) = Φ(f(1))
for f ∈ C({1}) doesn't make sense, since f(Φ(1)) = f(p) only de�nes an element in B(`2(N)) if
f ∈ C(σ(p)).

In order to �nd a solution to this problem, let us look at the spectra �rst.

Lemma 9. If A and B are unital C∗-algebras with A ⊆ B and 1A 6= 1B, then

σA(a) ∪ {0} = σB(a)

for all a ∈ A, where σA(a) and σB(a) denote the spectrum of a in A and B respectively.

Proof. It is clear that 1AB1A is a C∗-subalgebra of B with unit 1A. Applying [4, Lemma A.12],
we �nd σB(a) ∪ {0} = σ1AB1A(a). Since A ⊆ 1AB1A also has unit 1A, the result follows from [3,
Corollary 9.11].

Remark 2. If Φ: A → B is a ∗-homomorphism of unital C∗-algebras that satis�es Φ(1A) 6= 1B, we
know that B1 = Φ(A) is a unital C∗-subalgebra of B with unit 1B1

= Φ(1A). Then the above lemma
shows that

σB(Φ(a)) = σB1
(Φ(a)) ∪ {0} ⊆ σA(a) ∪ {0},

if we view Φ as a ∗-homomorphism A → B1. Hence the aforementioned problem of getting the
equation to make sense can at least partly be �xed by demanding that f ∈ C(σ(a) ∪ {0}).

There is still a problem, though: With the example from before, let us now consider the function
f(x) = x + 1. Once again using the element z = 1 ∈ C, then f(z) = 2 and thus Φ(f(z)) = 2p.
However, f(Φ(z)) = p+ 1B(`2(N)), so equality still doesn't hold!

The next two results should clear up everything in a �ash.

Lemma 10. If g ∈ C(Ω) where Ω is a compact subset of C satis�es g(0) = 0, then there is a sequence
of complex polynomials (pn(z))n≥1 in z and z without constant term, i.e., pn(0) = 0 for all n ≥ 1,
such that pn → g uniformly on Ω.

4



The continuous functional calculus for arbitrary C∗-algebras

Proof. Let (qn(z))n≥1 be a sequence of complex polynomials in z and z such that qn → g uniformly
on Ω, as made possible by the Stone-Weierstrass Theorem. De�ne polynomials pn(z) = qn(z)−qn(0),
and note that for all z ∈ Ω, we have

|pn(z)− g(z)| ≤ |qn(z)− g(z)|+ |g(0)− qn(0)| ≤ 2 sup
z∈Ω
|qn(z)− g(z)|,

so that pn → g uniformly on Ω.

Theorem 11. If Φ is a ∗-homomorphism of a unital C∗-algebra A into another unital C∗-algebra B
such that Φ(1A) 6= 1B, a ∈ A is normal and f ∈ C(σ(a) ∪ {0}), then Φ(f(a)) = f(Φ(a)) if and only
if f(0) = 0.

Proof. First of all, note that b = Φ(a) is normal. Since σ(b) ⊆ σ(a) ∪ {0} by Remark 2, f(b) is a
well-de�ned element of B. De�ne λ = f(0) and take a sequence (pn)n≥1 of complex polynomials in z
and z without constant term such that pn → f − λ uniformly on σ(a) ∪ {0}, using Lemma 10. Then
pn(a)→ f(a)− λ1A, so

Φ(pn(a))→ Φ(f(a))− λΦ(1A)

by continuity (see Corollary 16; no cheating!). However, we also have pn(b) → f(b) − λ1B. Since
the pn's have no constant term, it follows that pn(b) = Φ(pn(a)), so continuity along with the above
convergence tells us that

Φ(f(a))− λΦ(1A) = f(b)− λ1B.

The desired result immediately follows.

The question is now: what do elements of C∗(a) correspond to under the continuous functional
calculus? The next proposition answers this, with the aid of a new set of continuous functions on the
spectrum.

De�nition 12. Let A be a unital C∗-algebra and a ∈ A. We de�ne

C(a) = {f : σ(a)→ C | ∃g ∈ C(σ(a) ∪ {0}) : g|σ(a) = f and g(0) = 0} ⊆ C(σ(a)).

Proposition 13. Let A be a unital C∗-algebra and a ∈ A be normal. Then the image of C = C(a)
under the continuous functional calculus is C∗(a).

Proof. Note �rst that C is closed in C(σ(a)); if f ∈ C(σ(a)) such that fn → f uniformly with
(fn)n≥1 ⊆ C, let gn ∈ C(σ(a) ∪ {0}) such that gn|σ(a) = fn and gn(0) = 0 for all n ≥ 1. Then
‖gn − gm‖∞ ≤ ‖fn − fm‖∞, so (gn)n≥1 is a Cauchy sequence and thus it converges to some g ∈
C(σ(a)∪{0}) uniformly. It is clear that g(0) = 0 and that |fn(z)−g(z)| = |gn(z)−g(z)| ≤ ‖gn−g‖∞
for all n and z ∈ σ(a), so that fn → g uniformly on σ(a). Hence f = g|σ(a) ∈ C.

Let f ∈ C, take g ∈ C(σ(a) ∪ {0}) such that g|σ(a) = f and g(0) = 0. Lemma 10 yields a sequence
of (pn(z))n≥1 complex polynomials in z and z without constant term such that pn → g uniformly on
σ(a) ∪ {0}. Therefore pn(a)→ f(a). Since pn(a) is a polynomial in a and a∗ without constant term,
so pn(a) ∈ C∗(a), so f(a) ∈ C∗(a) because C∗(a) is closed.

If b ∈ C∗(a), there exist complex polynomials pn(z) in z and z without constant term such that
pn(a)→ b. Since ‖pn− pm‖∞ = ‖pn(a)− pm(a)‖ (the continuous functional calculus is an isometry),
it follows that (pn)n≥1 converges uniformly to some function f ∈ C(σ(a)). Since pn ∈ C and C is
closed, it follows that f ∈ C. Since ‖f(a)− pn(a)‖ = ‖f − pn‖∞, it follows that pn(a)→ f(a), so that
b = f(a) for this f ∈ C.

3 The continuous functional calculus, part II

In this section, assume that A is a non-unital C∗-algebra and that a ∈ A is a normal element. Let ιA
be the image of A in Ã under the isometric inclusion ∗-homomorphism. The spectrum σ(a) of a ∈ A
is de�ned to be the spectrum of ã ∈ Ã. Note that we automatically obtain 0 ∈ σ(a) for all a ∈ A.

Proposition 14. For any normal element a of a non-unital C∗-algebra, we have

(i) a is self-adjoint if and only if σ(a) ⊆ R.
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(ii) a is positive if and only if σ(a) ⊆ R+.

(iii) a is a projection if and only if σ(a) ⊆ {0, 1}.
(iv) ‖a‖ = supz∈σ(a) |z|.

Proof. We have that a is self-adjoint i� ã is self-adjoint i� σ(a) = σ(ã) ⊆ R and that a is a projection
i� ã is a projection i� σ(a) ⊆ {0, 1} by [3, Theorem 10.4]; hence (i) and (iii). (iv) follows from [3,
Theorem 8.1]. If a is positive, then ã is positive and σ(a) = σ(ã) ⊆ R+ by [3, Theorem 11.5]. We
save the converse for later, i.e. that a is positive if ã is positive.

The above proposition ensures that all we know about spectra of special elements in a C∗-algebra
still holds whether the C∗-algebra in question has a unit or not.

Proposition 15. For any ∗-homomorphism ϕ : A → B of arbitrary C∗-algebras and any a ∈ A, we
have

{0} ∪ σ(ϕ(a)) ⊆ {0} ∪ σ(a).

Proof. Assume �rst that A and B are unital. If λ 6= 0 and a− λ1A is invertible with inverse x, then

(ϕ(a)− λ1B)

(
ϕ(x) +

1

λ
ϕ(1A)− 1

λ
1B

)
= 1B,

so the result holds. (Note that if ϕ(1A) = 1B, then clearly σ(ϕ(a)) ⊆ σ(a).)

Assume that A is unital and that B isn't. If λ 6= 0 and a− λ1A is invertible with inverse x, then

(ϕ(a),−λ)

(
ϕ(x) +

1

λ
ϕ(1A),− 1

λ

)
= (0, 1),

so (ϕ(a),−λ) = ϕ̃(a)− λ1B̃ is invertible in B̃.

Assume penultimately that A is non-unital and that B is. If λ 6= 0 and (a,−λ) is invertible in Ã with
inverse (x, µ), then ax− λx+ µa = 0 and −λµ = 1, so that

(ϕ(a)− λ1B) (ϕ(x) + µ1B) = 1B,

so ϕ(a)− λ1B is invertible in B.

Lastly, assume that A and B are both non-unital. If λ 6= 0 and (a,−λ) is invertible in Ã with inverse
(x, µ), then

(ϕ(a),−λ)(ϕ(x), µ) = (0, 1),

completing the proof.

Corollary 16. Any ∗-homomorphism ϕ : A → B of arbitrary C∗-algebras is contractive.

Proof. We have

‖ϕ(x)‖2 = ‖ϕ(x∗x)‖ = sup
z∈σ(ϕ(x∗x))

|z| ≤ sup
z∈σ(x∗x)∪{0}

|z| = sup
z∈σ(x∗x)

|z| = ‖x∗x‖ = ‖x‖2

by Propositions 14 and 15.

If a ∈ A, we de�ne C(a) = C(ã) (see De�nition 12). As 0 ∈ σ(a), we have

C(a) = {f ∈ C(σ(a)) | f(0) = 0}.

Let π : Ã → C be the unital ∗-homomorphism given by (a, λ) 7→ λ, and note that kerπ = ιA. By
Theorem 8 we have

π(f(ã)) = f(π(ã)) = f(0)

for all f ∈ C(σ(a)). Hence f(ã) ∈ ιA if and only if f(0) = 0, i.e., if f ∈ C(a). This yields the following
nice result:
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Proposition 17. If a is a normal element of a non-unital C∗-algebra A, there is a ∗-isomorphism
Fa : C(a)→ C∗(a) such that the identity map 1: σ(a)→ σ(a) is mapped to a itself, and

F̃a(f) = f(ã)

for all f ∈ C(a).

Proof. By Proposition 13, restricting the continuous functional calculus yields a ∗-homomorphism
ϕa : C(a)→ C∗(ã) such that 1 is mapped to ã. It is easy to see that the ∗-isomorphism ι−1 : ιA → A
restricts to a ∗-isomorphism of C∗(ã) onto C∗(a). Composing yields the desired isomorphism, as
f(ã) = ϕa(f) = ι(Fa(f)).

De�nition 18. If a ∈ A is normal and f ∈ C(a), we de�ne f(a) = Fa(f) ∈ C∗(a), where Fa is
the ∗-isomorphism of Proposition 17. The ∗-isomorphism itself is called the continuous functional
calculus for a.

As before (but now a little more general): if a is a normal element of any C∗-algebra A, then if
f ∈ C(Ω) for some subset σ(a) ⊆ Ω ⊆ C with f(0) = 0, we de�ne f(a) = f |σ(a)(a).

Theorem 19 (Properties of the continuous functional calculus for non-unital C∗-algebras). Let A
be a non-unital C∗-algebra. If a ∈ A is normal, then for all λ, µ ∈ C and f, g ∈ C(a) we have

(i) (λf + µg)(a) = λf(a) + µg(a).

(ii) (fg)(a) = f(a)g(a).

(iii) f(a) = f(a)∗.

(iv) If 1 denotes the identity map σ(a)→ σ(a), then 1(a) = a.

(v) If P : z 7→ p(z, z̃) is a complex polynomial in z and z with no constant term, then P (a) = p(a, a∗).

(vi) If Ω is a subset of C such that σ(a) ⊆ Ω, then

‖f(a)‖ = sup
z∈σ(a)

|f(z)| ≤ sup
z∈Ω
|f(z)|.

(vii) σ(f(a)) = f(σ(a)).

(viii) If h ∈ C(f(a)), then h ◦ f ∈ C(a) and (h ◦ f)(a) = h(f(a)).

(ix) If Φ is a ∗-homomorphism of A into another C∗-algebra B, then Φ(f(a)) = f(Φ(a)).

Proof. (i)-(iii) follows from the continuous functional calculus being a ∗-homomorphism. (iv) is im�
mediate from the de�nition, and (v) follows accordingly. To see (vi), note that Theorem 8(vii) yields

‖f(a)‖ = ‖f(ã)‖ = sup
z∈σ(ã)

|f(z)| = sup
z∈σ(a)

|f(z)|.

(vii) is easy, as Theorem 8(viii) yields

σ(f(a)) = σ(f̃(a)) = σ(f(ã))
8(viii)

= f(σ(ã)) = f(σ(a)).

To prove (viii), take F ∈ C(σ(a)∪{0}) such that F |σ(a) = f and F (0) = 0 and H ∈ C(σ(f(a))∪{0})
such that H|σ(f(a)) = h and H(0) = 0. As F (σ(a) ∪ {0}) = f(σ(a)) ∪ {0} = σ(f(a)) ∪ {0} by (vii),
we have that H ◦ F ∈ C(σ(a) ∪ {0}), that (H ◦ F )(z) = H(f(z)) = (h ◦ f)(z) for all z ∈ σ(a) and
H(F (0)) = 0, we have h ◦ f ∈ C(a). Theorem 8(ix) then yields

˜(h ◦ f)(a) = (h ◦ f)(ã)
8(ix)
= h(f(ã)) = h(f̃(a)) = h̃(f(a)).

For (ix), assume �rst that B is unital and de�ne a ∗-homomorphism Φ̃ : Ã → B by Φ̃(a, λ) = Φ(a) +
λ1B. Theorem 8(x) now yields

Φ(f(a)) = Φ̃(f̃(a)) = Φ̃(f(ã))
8(x)
= f(Φ̃(ã)) = f(Φ(a)).

If B is non-unital, we instead de�ne a ∗-homomorphism Φ̃ : Ã → B̃ by Φ̃(a, λ) = (Φ(a), λ). Then

Φ̃(f(a)) = Φ̃(f̃(a)) = Φ̃(f(ã))
8(x)
= f(Φ̃(ã)) = f(Φ̃(a)) = ˜f(Φ(a)),

and hence we obtain the wanted equality.
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Thus all the usual tricks that one may perform in order to construct speci�c �nice� elements of a
C∗-algebra still work.

Last part of the proof of Proposition 14. Since σ(a) = σ(ã) ⊆ R+, let f(t) =
√
t for t ∈ σ(a). As

f(0) = 0, we have f ∈ C(a) and f(a) ∈ A. Since f(a) is self-adjoint as f = f and f(t)2 = 1(t) for all
t ∈ σ(ã) we conclude that f(a)∗f(a) = 1(a) = a, i.e. that a is positive.

As promised, we provide a proof of Theorem 8(x) in the case where B is not unital.

Theorem 20. Let A be a unital C∗-algebra, and let a ∈ A be normal. If B is a non-unital C∗-algebra
and Φ: A → B is a ∗-homomorphism, then

Φ(f(a)) = f(Φ(a))

for all f ∈ C(σ(a) ∪ {0}) such that f(0) = 0.

Proof. Let f be as above, and de�ne Φ̃ : A → B̃ by Φ̃(x) = (Φ(x), 0). Then Φ̃ is a ∗-homomorphism
and Theorem 11 thus yields

Φ̃(f(a)) = Φ̃(f(a)) = f(Φ̃(a)) = f(Φ̃(a)) = ˜f(Φ(a)).

This implies the wanted result.

4 For your eyes only, only for you

We provide a summary of what we have proved so far, enabling us to use the continuous functional
calculus for any C∗-algebra, unital or not.

Theorem 21 (Properties of the continuous functional calculus for arbitrary C∗-algebras). Let A be
an arbitrary C∗-algebra, let a ∈ A be normal and de�ne a ∗-subalgebra C(a) of C(σ(a)) given by

C(a) = {f ∈ C(σ(a)) | ∃g ∈ C(σ(a) ∪ {0}) : g|σ(a) = f and g(0) = 0}.

Then there exists a ∗-isomorphism C(a)→ C∗(a), f 7→ f(a) such that for all λ, µ ∈ C and f, g ∈ C(a),
we have

(i) (λf + µg)(a) = λf(a) + µg(a).

(ii) (fg)(a) = f(a)g(a).

(iii) f(a) = f(a)∗.

(iv) If 1 denotes the identity map σ(a)→ σ(a), then 1(a) = a.

(v) If P : z 7→ p(z, z̃) is a complex polynomial in z and z with no constant term, then P (a) = p(a, a∗).

(vi) If Ω is a subset of C such that σ(a) ⊆ Ω, then

‖f(a)‖ = sup
z∈σ(a)

|f(z)| ≤ sup
z∈Ω
|f(z)|.

(vii) σ(f(a)) = f(σ(a)).

(viii) If h ∈ C(f(σ(a))) has an continuous extension to f(σ(a)) ∪ {0} such that h(0) = 0, then
(h ◦ f)(a) = h(f(a)).

(ix) If Φ is a ∗-homomorphism of A into another C∗-algebra B, then Φ(h(a)) = h(Φ(a)) for all
h ∈ C(σ(a) ∪ {0}) such that h(0) = 0.

Proof. This follows from Theorems 8, 11, 19 and 20.
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5 Examples

We provide some nice applications to emphasize that we do not need to know whether a C∗-algebra
is unital or not in order to use the continuous functional calculus. Recall that the spectrum of an
element a in a C∗-algebra A is contained in {z ∈ C | |z| ≤ ‖a‖}.

Proposition 22. Let A and B be arbitrary C∗-algebras and let ϕ : A → B be a ∗-homomorphism.
Then if b ∈ ϕ(A) and b is self-adjoint, there exists a self-adjoint element a ∈ A such that ϕ(a) = b
and ‖a‖ = ‖b‖.

Proof. Take x ∈ A such that ϕ(x) = b and de�ne y = 1
2 (x+ x∗). Then y is self-adjoint and

ϕ(y) =
1

2
(ϕ(x) + ϕ(x)∗) =

1

2
(b+ b) = b.

De�ne f : R→ R by

f(z) =

 −‖b‖ z ≤ −‖b‖
z −‖b‖ ≤ z ≤ ‖b‖
‖b‖ z ≥ ‖b‖

Clearly f is continuous and f(0) = 0. We have that σ(b) ⊆ R and that f |σ(b) is the identity map
on σ(b), so we conclude f(b) = b. Likewise σ(y) ⊆ R, so we can de�ne a = f(y) ∈ A. Since
σ(a) = σ(f(y)) = f(σ(y)) ⊆ R, a is self-adjoint and

‖a‖ = sup
z∈σ(y)

|f(z)| ≤ ‖b‖.

As
ϕ(a) = ϕ(f(y)) = f(ϕ(y)) = f(b) = b

and ‖b‖ = ‖ϕ(a)‖ ≤ ‖a‖, we obtain the desired result.

Theorem 23. Let ϕ : A → B be a ∗-homomorphism of arbitrary C∗-algebras. Then the image ϕ(A)
is a C∗-subalgebra of B.

Proof. Assume that y ∈ B and that ϕ(xn)→ y for some sequence (xn)n≥1 in A. Writing y = y′+ iy′′

and xn = x′n + ix′′n, where y
′, y′′, x′n, x

′′
n ∈ A are self-adjoint, then ϕ(x′n) → y′ and ϕ(x′′n) → y′′.

Hence it is enough to show that if ϕ(an) → b for self-adjoint b ∈ B and a sequence (an)n≥1 ⊆ A of
self-adjoint elements, then b = ϕ(a) for some a ∈ A. Taking N1 ≥ 1 such that ‖ϕ(an)− ϕ(am)‖ < 1

2
for n,m ≥ N1 and inductively taking Nn+1 ≥ Nn for n ≥ 1 such that ‖ϕ(an) − ϕ(am)‖ < 1

22 for
n,m ≥ Nn+1 and so on, we now de�ne cn = aNn

for all n ≥ 1. Then (cn)n≥1 is a sequence of
self-adjoint elements satisfying ϕ(cn)→ b and

‖ϕ(cn+1)− ϕ(cn)‖ < 1

2n
, n ≥ 1.

For all n ≥ 1, de�ne fn : R→ R by

fn(z) =

 −
1

2n z ≤ − 1
2n

z − 1
2n ≤ z ≤ 1

2n

1
2n z ≥ 1

2n

Since σ(ϕ(cn+1)− ϕ(cn)) ⊆ R with ‖ϕ(cn+1)− ϕ(cn)‖ < 1
2n , fn is the identity map when restricted

to σ(ϕ(cn+1)− ϕ(cn)), so that the fact that fn is continuous and satis�es fn(0) = 0 yields

ϕ(cn+1)− ϕ(cn) = fn(ϕ(cn+1)− ϕ(cn)) = fn(ϕ(cn+1 − cn)) = ϕ(fn(cn+1 − cn)).

Moreover, ‖fn(cn+1 − cn)‖ ≤ 1
2n . Hence

∑∞
n=1 fn(cn+1 − cn) converges in A, and

ϕ

(
c1 +

∞∑
n=1

fn(cn+1 − cn)

)
= ϕ(c1) + ϕ

( ∞∑
n=1

fn(cn+1 − cn)

)

= ϕ(c1) +

∞∑
n=1

ϕ(fn(cn+1 − cn))

= ϕ(c1) +

∞∑
n=1

(ϕ(cn+1)− ϕ(cn)) = lim
n→∞

ϕ(cn) = b,

by continuity of ϕ. Hence the result follows.
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Proposition 24. If ϕ : A → B is an unital injective ∗-homomorphism of unital C∗-algebras, then it
is an isometry and

σ(Φ(a)) = σ(a)

for all a ∈ A.

Proof. Let a ∈ A be normal and de�ne b = Φ(a). By Proposition 15, it follows that

σ(b) ⊆ σ(a).

Assume that there exists λ ∈ σ(a) such that λ /∈ σ(b). Then Urysohn's lemma provides a non-zero
continuous function f : σ(a) → [0, 1] such that f |σ(b) = 0 and f(λ) = 1. In particular, f is non-zero
in C(σ(a)). Hence the continuous functional calculus yields f(a) 6= 0, but

Φ(f(a)) = f(b) = 0,

since f is the zero function on σ(b), which contradicts the assumption that Φ is injective. Hence the
sets are equal. By Proposition 23, hence Φ(A) is a unital C∗-subalgebra of B that is isomorphic to
A, so [3, Corollary 9.11] tells us that σA(a) = σΦ(A)(a) = σB(a).

Lemma 25. Let A and B be C∗-algebras with A ⊆ B and a ∈ A. Let σA(a) and σB(a) denote the
spectrum of a in A and B respectively. If A and B are unital with 1A = 1B, then σA(a) = σB(a). If
not,

σA(a) ∪ {0} = σB(a).

In any case, σA(a) ∪ {0} = σB(a) ∪ {0}.

Proof. Assume �rst that A and B are unital. If 1A = 1B, the result follows from [3, Corollary 9.11];
if 1A 6= 1B, then the claim follows from Lemma 9.

If B is unital but A isn't, then A + C1B is a unital C∗-algebra that is isomorphic to the unitization
Ã. Then

σA(a) ∪ {0} = σA(a) = σÃ(ã) = σA+C1B(a) = σB(a)

by [3, Corollary 9.11] and Proposition 24.

If A is unital and B isn't, note that the map A → 1̃AB̃1̃A given by a 7→ ã is a unital ∗-isomorphism.
Hence we get from Lemma 9 and Proposition 24 that

σB(a) = σB̃(ã) = σ1̃AB̃1̃A
(ã) ∪ {0} = σA(a) ∪ {0}.

Finally, if both A and B are non-unital, then the subset C = {(a, λ) | a ∈ A, λ ∈ C} of B̃ is a
C∗-subalgebra that is isomorphic to Ã, yielding σA(a) = σÃ(ã) = σC(ã) = σB̃(a) = σB(a) by
Proposition 24.

Corollary 26. Let Φ: A → B be a injective ∗-homomorphism of C∗-algebras. Then Φ is an isometry
and

σ(a) ∪ {0} = σ(Φ(a)) ∪ {0}
for all a ∈ A. In particular, if a ∈ A and Φ(a) is self-adjoint (resp. positive, a projection), then a is
self-adjoint (resp. positive, a projection).

Proof. Let a ∈ A. Since Φ(A) is a C∗-subalgebra of B that is isomorphic to A, Lemma 25 tells us
that

σA(a) ∪ {0} = σΦ(A)(Φ(a)) ∪ {0} = σ(Φ(a)) ∪ {0}.
Therefore

‖a‖2 = ‖a∗a‖ = sup
z∈σ(a∗a)

|z| = sup
z∈σ(Φ(a)∗Φ(a))

|z| = ‖Φ(a)∗Φ(a)‖ = ‖Φ(a)‖2

by Proposition 14 and [3, Theorem 8.1]. The rest follows from Proposition 14 as well as [3, Theorems
10.4 and 11.5].

Theorem 27. Any self-adjoint element x of any C∗-algebra A is a di�erence of positive elements
x+ and x− in A such that x+x− = x−x+ = 0 and ‖x‖ = max{‖x+‖, ‖x−‖}.

Proof. The proof of [3, Theorem 11.2] adjusts easily.
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