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Abstract

This graduate project concerns the concepts of injectivity and semidiscreteness for von Neu�

mann algebras. A von Neumann algebra M is injective if it holds for any C∗-algebra A with

a C∗-subalgebra B that a completely positive map B → M extends to a completely positive map

A → M , and M is semidiscrete if the identity map on M can be approximated ultraweakly by

normal and completely positive maps of �nite rank. The main theorem of the project states that

these notions are in fact equivalent. To prove this theorem it is necessary to determine if certain

von Neumann algebras inherit injectivity or semidiscreteness from others, and the proof also re�

quires knowledge about Hilbert-Schmidt operators and continuous crossed products, the �rst of

which will be dealt with thoroughly. Equally important is that the project provides the needed

theoretical background for de�ning injectivity and semidiscreteness. To this end we will develop

the relevant theory of tensor products of C∗-algebras and completely positive maps from scratch,

as well as de�ne and �nd properties of the ultraweak and ultrastrong operator topologies on the

space of bounded linear operators on Hilbert spaces. In the process, we are also able to establish

the notion of a predual of a von Neumann algebra, namely a Banach space whose dual can be iden�

ti�ed with the von Neumann algebra, and the enveloping von Neumann algebra of a C∗-algebra A
which can be identi�ed with the double dual space A∗∗ of the C∗-algebra in question.

Resumé

Dette fagprojekt omhandler egenskaberne injektivitet og semidiskrethed for von Neumann-alge�

braer. En von Neumann-algebra M er injektiv hvis der gælder for enhver C∗-algebra A indehold�

ende en C∗-delalgebra B at en fuldstændig positiv afbildning B → M kan udvides til en fuldstændig

positiv afbildningA → M , og M er semidiskret hvis identitetsafbildningen M → M kan tilnærmes

ultrasvagt af normale, fuldstændig positive afbildninger med endeligdimensionalt billede. Hoved�

sætningen i dette projekt siger, at disse egenskaber faktisk er ækvivalente. For at bevise denne

sætning kræves en række resultater om arvelighed af disse egenskaber, og beviset benytter også

viden om Hilbert-Schmidt-operatorer og såkaldte kontinuerte krydsprodukter, hvoraf begrebet om

Hilbert-Schmidt-operatorer vil blive uddybet helt og aldeles. Ikke mindst vil projektet også give

den nødvendige teoretiske baggrund for at kunne de�nere injektivitet og semidiskrethed. Dette

indebærer, at vi opbygger noget af teorien for tensorprodukter af C∗-algebraer og fuldstændig

positive afbildninger fra bunden, samt de�nerer og �nder egenskaber for den ultrasvage og ultra�

stærke operatortopologi på rum af begrænsede lineære operatorer over Hilbert-rum. I processen

vil vi etablere begrebet om prædualet af en von Neumann algebra, navnlig et Banach-rum hvis

duale rum kan identi�ceres med den oprindelige von Neumann algebra, samt den universelle von

Neumann algebra for en C∗-algebra A, som kan identi�ceres med det dobbeltduale rum A∗∗ for

C∗-algebraen.
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PROLOGUE

Let me start out by saying that this project is not what it was originally supposed to be. Before I
started writing, I was �rmly convinced that by the time I had handed the project in I would have
proved equivalence of not just the concepts injectivity and semidiscreteness, but also amenability and
hyper�niteness on top of that. Alas, that was not to be. I found out pretty quickly that I wasn't
emotionally capable of writing about something that I did not understand down to the smallest detail,
simply because every time I did, I would have a guilty conscience about doing it. I could compare it to
trying to step into the middle of a busy conversation and try to join in � often one can't help but fail.

So instead this project became something else. Indeed I had to take some steps back and lower my
ambitions, but once I accepted my limitations everything work-related felt quite a bit better just
because I had a real chance of �nding out what was going on. I probably do not need to tell you
that the theory of von Neumann algebra often takes you places you did not expect (I for one would
not expect the fact that (R,+) is an amenable group to have anything to do with the proof of the
aforementioned equivalence, but what do I know), and I have not wasted my opportunity to �nd out
what has really been going on beneath the surface.

That last statement might actually explain the length of this project: I have attempted to explain
anything that could be explained. Some readers may �nd the length to be extreme overkill, and I don't
blame them: the standard length of a graduate project is probably somewhere in the neighbourhood
of 40 or 50 pages, at least in Copenhagen. However, I cannot state enough that the only intent of the
project has been for myself to learn something, and if at least some of the things I have put in here
are correct then I think I haven't failed in the least. (The fact that this project is also to be judged
by my advisor and an external censor is, after all, more than anything an opportunity to learn, even
though I hope that I haven't made some really big mistakes throughout.)

Nonetheless, the fact that I have sought throughout to understand everything fully implies big ambi�
tions, and I have had a couple of big brain meltdowns and at least one emotional breakdown during
the writing period. I only hope for future graduate project authors that they are not as sensitive as I
have been, that they have friends as good as mine and that they listen to a lot of fantastic music.

This might be a good place to quickly run through what the project covers:

q When I write something, I prefer that all the required tools are laid on a table beforehand, and this
project is no exception to that preference. Hence the �rst 10 pages or so are devoted to introducing
all the needed concepts for C∗-algebras, von Neumann algebras, Hilbert spaces and positive linear
functionals, including the GNS construction.

q As we hit upon the �rst chapter we shift gears and develop the theory of tensor products: we
�rst cover vector spaces, then Hilbert spaces and �nally ∗-algebras. Matrix algebras are de�ned and
analyzed, allowing for an almost smooth transition into the world of tensor products of von Neumann
algebras. We �nally give a description of tensor products of C∗-algebra with a view toward algebraic
states, culminating with the equivalence of the so-called minimal norm and a somewhat peculiar
norm to be needed later.

q We next hit upon my perhaps favourite part of the project, Chapter 2. As a project-within-a-project
concerning the ultraweak and ultrastrong operator topology on the space of bounded linear operators
over Hilbert spaces, it is a real smorgasbord of concepts such as preduals, central supports, reduced
von Neumann algebras, normal maps, σ-�niteness and the enveloping von Neumann algebra, along

i



ii PROLOGUE

with more powerful versions of theorems essential for basic von Neumann algebra theory, namely
von Neumann's density and bicommutant theorems. The chapter also contains a section about the
Jordan decomposition of any bounded linear functional on a C∗-algebra.

q In the third chapter, we introduce the concepts of positive and completely positive maps between
C∗-algebras or duals of C∗-algebras and explain them by means of relevant examples and theorems.
The big result of this chapter is of course Stinespring's representation theorem, a generalization
of the GNS construction. Using this theorem one can �nd out a lot about certain maps of von
Neumann algebras, only for the greater good of the project.

q The fourth chapter concerns injectivity. The highlight here is Tomiyama's theorem, used to prove
a von Neumann algebra condition equivalent to injectivity. With this criterion in hand, one can
determine various hereditary properties of the concept. The chapter closes out with an introduction
to continuous crossed products and amenable locally compact groups.

q The �fth and �nal chapter naturally concerns semidiscreteness. By means of the predual, we establish
a couple of conditions equivalent to semidiscreteness and proceed along the lines of the previous
chapter to prove hereditary properties of that concept. The �nal section is devoted to the proof that
semidiscreteness is in fact equivalent to injectivity, using a lot of the theory we have been developing
in all of the previous chapters.

q The project also contains two appendices: the �rst contains a lot of important results for Ba�
nach spaces and C∗-algebras, and the second develops the theory of trace class operators and
Hilbert-Schmidt operators (it is needed in Chapter 5).

Let me also stress that �nding great literature isn't necessarily as easy as one would think. Most of
this project is based on the work done in [28] which has unfortunately not been the best of sources.
Much time has been spent merely deciphering the proofs therein, either because there were mistakes,
or because things that really needed a proper explanation did not get one. Hopefully my work will
undo that wrongdoing.

One �nal piece of advice that is easy to remember but may be hard to follow at times: remember to
sleep. My circadian rhythm has never been more messed up than when writing this project, and boy,
have I su�ered. Enjoy reading!

February 2013
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LA BOÎTE À JOUJOUX

We will begin our tour of von Neumann algebra territory by introducing the most relevant concepts
along with the notation that will be used for it; a box of tools (or toys) is perhaps the most �tting
description of this introductory chapter. References will be given throughout, as we will not spend
time proving all the statements we will give. Since we will be working with Hilbert spaces to no end
throughout this project, let us also say now so that nobody forgets:

H denotes an arbitrary Hilbert space unless otherwise stated.

The inner product on H is denoted by 〈·, ·〉H or just 〈·, ·〉 if the Hilbert space is clear from the context,
and B(H) denotes the C∗-algebra of bounded linear operators on H. We also introduce the follow
convention immediately: for any normed space X and r > 0, (X)r denotes the set {x ∈ X | ‖x‖ ≤ r}.
The symbol n will usually denote a positive integer unless otherwise stated.

C∗-algebras

Here we will summarize the most important things one should know about C∗-algebras before reading
the main parts of the project. Some of the results are more important or useful than others; the main
idea is just to give the reader a short course on the varieties of elements one can �nd in C∗-algebras,
as well as essential types of maps over them.

In the following, let A be a C∗-algebra. If A is unital, the identity or unit of A will be denoted by 1A;
in this case, then for any a ∈ A the spectrum σ(a) is the non-empty compact subset of C consisting of
all λ ∈ C such that λ1A−a is not invertible. We will always try to be as speci�c as possible concerning
whether the C∗-algebras put under the microscope in this project have an identity or not.

q If A is non-unital, then the unitization of A is denoted by Ã. As a set, Ã consists of all tuples (a, λ)
with a ∈ A and λ ∈ C, with coordinatewise addition and scalar multiplication, and the product
given by

(a, λ) · (b, µ) = (ab+ µa+ λb, λµ), a, b ∈ A, λ, µ ∈ C.

These compositions then yield an identity 1Ã = (0, 1). The involution and norm in Ã are given by

(a, λ)∗ = (a∗, λ), ‖(a, λ)‖ = sup{‖ax+ λx‖ |x ∈ A, ‖x‖ ≤ 1}, a ∈ A, λ ∈ C.

Note here that ‖(a, 0)‖ = ‖a‖ for all a ∈ A, so that the inclusion A → Ã is an isometric
∗-homomorphism. The spectrum of an element a in a non-unital C∗-algebra is de�ned to be the
spectrum of (a, 0) in the unitization.

q Asa denotes the set of self-adjoint elements of a C∗-algebra A, i.e. elements a ∈ A such that a = a∗.
Every element a ∈ A satis�es a = a1 + ia2 where a1 = 1

2 (a+ a∗) ∈ Asa and a2 = 1
2i (a− a

∗) ∈ Asa.
Note in this case that we also have ‖a1‖ ≤ ‖a‖ and ‖a2‖ ≤ ‖a‖. If A is unital, then for any a ∈ Asa,
σ(a) ⊆ R [31, Proposition 8.2]. Any self-adjoint element a ∈ A is normal , i.e. it satis�es the identity
a∗a = aa∗. A subset S of a C∗-algebra A is self-adjoint if x ∈ S implies x∗ ∈ S , and we will write
S = S ∗ if this is the case.

q A+ denotes the set of positive elements of a C∗-algebra A, i.e. elements a ∈ A for which there exists
b ∈ A such that a = b∗b. It is well-known for unital C∗-algebras � see e.g. [31, Theorem 11.5] � that
a ∈ A is positive if and only if a ∈ Asa and

σ(a) ⊆ R+ = {λ ∈ R |λ ≥ 0}.

iii



iv LA BOÎTE À JOUJOUX

If A = B(H), then an element T ∈ A is positive if and only if 〈Tξ, ξ〉 ≥ 0 for all ξ ∈ H [31, Theorem
12.5]. It is possible to de�ne an order relation on Asa by de�ning a ≤ b if b−a ∈ A+ (see Proposition
0.6).

q It is a non-trivial result that any C∗-algebra has an approximate identity , i.e. there exists a net
(eα)α∈A in A such that ‖eα‖ ≤ 1 and eα ≥ 0 for all α ∈ A and ‖eαx− x‖ → 0 and ‖xeα − x‖ → 0
for all x ∈ A [31, Corollary 15.4].

q If A is a C∗-algebra, then p ∈ A is a projection if it satis�es p2 = p = p∗. Projections in B(H)
have very nice properties: if P ∈ B(H) is a projection, then P (H) is a closed subspace of H and
ξ − Pξ ∈ P (H)⊥ for all ξ ∈ H. If X is a closed subspace of H, then any ξ ∈ H can be decomposed
uniquely as a sum of elements ξ1 ∈ X and ξ2 ∈ X⊥, X⊥ denoting the orthogonal complement of X
[30, Theorem 4.24]. De�ning Pξ = ξ1, one obtains a map P : H → H which is in fact a bounded
linear operator on H and a projection in B(H), called the orthogonal projection onto X. For any
two projections P,Q ∈ B(H), we have equivalent conditions

P ≤ Q⇔ QP = P ⇔ QP = PQ = P ⇔ P (H) ⊆ Q(H).

q A unitary of a unital C∗-algebra A is an element u ∈ A that satis�es u∗u = uu∗ = 1A or u−1 = u∗.
The set of unitaries of A, denoted U(A), is a multiplicative group. If A = B(H), we will write
U(H) = U(B(H)).

q For ∗-algebras A and B, a map ϕ : A → B is a ∗-homomorphism if it is linear and satis�es

ϕ(ab) = ϕ(ab), ϕ(a∗) = ϕ(a)∗, a, b ∈ A.

If A and B are unital, a ∗-homomorphism is unital if it maps 1A to 1B. If a ∗-homomorphism is
bijective, it is called a ∗-isomorphism. By [24, Proposition 5.2], any ∗-homomorphism of C∗-algebras
is contractive, and by [24, Corollary 5.4], any injective ∗-homomorphism of C∗-algebras is an isometry
and hence maps C∗-subalgebras to C∗-subalgebras. A unital ∗-homomorphism maps C∗-algebras to
C∗-algebras [31, Theorem 11.1].

q A representation of a ∗-algebra A is a ∗-homomorphism A → B(H) where H is some Hilbert space.
A representation is called faithful if it is injective.

q The continuous functional calculus for normal elements of a unital C∗-algebra A is in general an
immensely useful tool for constructing new operators with certain properties. For any normal element
a ∈ A, there is a ∗-isomorphism C(σ(a))→ B where B is the C∗-subalgebra of A generated by a and
1A, and the image in B of f ∈ C(σ(a)) under this map is denoted by f(a). The essential properties
of this ∗-isomorphism are brie�y mentioned in [31, Theorem 10.3]. It is also possible to work with
the continuous functional calculus for non-unital C∗-algebras: if A is non-unital, a ∈ A is normal
and f ∈ C(σ(a)) satis�es f(0) = 0, then f de�nes an element f(a) ∈ A as f can be approximated
uniformly by polynomials without constant term [24, p. 19]. We will come back to this whenever it
will be needed in the main parts of the project.

If A is unital, then perhaps the most intriguing application of the continuous functional calculus is
the construction of unique square roots of positive elements a, i.e. a unique element b ∈ A such that
b2 = a. In this case we denote b by a1/2, and we de�ne |a| ∈ A for any a ∈ A by |a| = (a∗a)1/2.

It is worth mentioning that the continuous functional calculus also yields some useful inequalities.
For instance,

−‖a‖1A ≤ a ≤ ‖a‖1A, a ∈ Asa.

If −b ≤ a ≤ b for a, b ∈ Asa, then one can show that ‖a‖ ≤ ‖b‖ by using the preceding result. For
all a, b ∈ Asa, then a ≤ b implies c∗ac ≤ c∗bc for all c ∈ A just by using the de�nition of the order
relation. This along with the �rst result yields b∗a∗ab ≤ ‖a‖2b∗b for all a, b ∈ A.

q In the C∗-algebra B(H) we will often be working with partial isometries. U ∈ B(H) is a partial
isometry if its restriction to (kerV )⊥ is an isometry. One can prove that U ∈ B(H) is a partial
isometry if and only if U∗U is a projection [31, Proposition 12.6], in which case U∗U projects onto
kerU . Also, U is a partial isometry if and only if U∗ is a partial isometry [31, Corollary 12.7].
Finally, partial isometries are insanely useful for decomposing arbitrary operators in B(H). The
so-called polar decomposition of any operator T ∈ B(H) yields a partial isometry U ∈ B(H) such
that T = U |T |. U can be chosen to be the orthogonal projection onto the closure of the image of
|T | [31, Theorem 12.8].



LA BOÎTE À JOUJOUX v

q For any subset S of a C∗-algebra A, the commutant S ′ is de�ned as follows:

S ′ = {a ∈ A | ab = ba for all b ∈ S },

i.e. S ′ consists of all elements of A that commute with elements of S . It is easily seen that S ′ is
a Banach subalgebra of A, and if S is self-adjoint, then S ′ is a C∗-subalgebra of A.

Positive linear functionals on C∗-algebras

For a ∗-algebra A, a linear functional ϕ : A → C is positive if ϕ(x∗x) ≥ 0 for all x ∈ A. It can be
proved that any positive linear functional on any C∗-algebra (even a non-unital one) is bounded; see
[24, Proposition 9.12].

Given a ∗-algebra A, then for ϕ1, ϕ2 ∈ A∗, we will write ϕ1 ≤ ϕ2 if ϕ2 − ϕ1 is a positive linear
functional on A; we say the ϕ2 dominates ϕ1.

For any Banach ∗-algebra A, S(A) denotes the space of states of A, i.e. the set of all positive linear
functionals ϕ : A → C with ‖ϕ‖ = 1. If A is a unital C∗-algebra, a linear functional ϕ : A → C
is positive if and only if it is bounded with ‖ϕ‖ = ϕ(1A), the proof of which can be found in [31,
Theorem 13.5] (one implication is the consequence of Proposition 0.3); hence ϕ ∈ S(A) if and only if
‖ϕ‖ = ϕ(1A) = 1 or ϕ is positive and ϕ(1A) = 1. A state ϕ ∈ S(A) is faithful if ϕ(a∗a) > 0 for all
nonzero a ∈ A and tracial if it satis�es ϕ(ab) = ϕ(ba) for all a, b ∈ A.

We shall often need the following results for estimation purposes.

Proposition 0.1. Let A be a ∗-algebra and let ϕ be a positive linear functional on A. Then

(i) ϕ(b∗a) = ϕ(a∗b) for all a, b ∈ A.
(ii) (The Cauchy-Schwarz inequality) |ϕ(b∗a)|2 ≤ ϕ(a∗a)ϕ(b∗b) for all a, b ∈ A.

Proof. For (i), we have

ϕ(a∗a) + ϕ(b∗a) + ϕ(a∗b) + ϕ(b∗b) = ϕ((a+ b)∗(a+ b)) ≥ 0,

so ϕ(b∗a) + ϕ(a∗b) ∈ R, and hence Imϕ(b∗a) = −Imϕ(a∗b). As Rez = Imiz for all z ∈ C, we have

Reϕ(b∗a) = Imϕ(b∗(ia)) = −Imϕ((ia)∗b) = −Im(−iϕ(a∗b)) = Im(iϕ(a∗b)) = Reϕ(a∗b)

and hence ϕ(b∗a) = ϕ(a∗b).

To prove (ii), note that for λ ∈ C, we have

0 ≤ ϕ((a− λb)∗(a− λb)) = ϕ(a∗a)− λϕ(b∗a)− λϕ(a∗b) + |λ|2ϕ(b∗b).

Assuming �rst that ϕ(b∗b) > 0, then by setting λ = ϕ(b∗a)ϕ(b∗b)−1, we obtain

ϕ(a∗a)− |ϕ(b∗a)|2

ϕ(b∗b)
≥ 0

by using (i). By rearranging terms, we obtain the wanted inequality. If ϕ(b∗b) = 0, let n ≥ 1 be a
positive integer and put λ = nϕ(b∗a). This implies ϕ(a∗a)− 2n|ϕ(b∗a)|2 ≥ 0, so 2n|ϕ(b∗a)|2 ≤ ϕ(a∗a)
for all n ≥ 1. This implies that |ϕ(b∗a)|2 = 0, and hence the inequality also holds in this case.

The following theorem lays down an intimate connection between C∗-algebras and their states. The
properties of the Gelfand transform are essential to the proof; see [31, Chapter 5].

Theorem 0.2. Let A be a C∗-algebra and let a ∈ A be normal. Then there exists a state ϕ ∈ S(A)
such that |ϕ(a)| = ‖a‖. In particular, if a ∈ A is any element and ϕ(a) = 0 for all ϕ ∈ S(A), then
a = 0.
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Proof. We can assume that a 6= 0. Assume that A is non-unital �rst. Let B be the C∗-subalgebra of
the unitization Ã of A generated by the unit 1Ã and (a, 0). B is commutative and hence the Gelfand
transform Γ: B → C(∆(B)) is a ∗-isomorphism [31, Theorem 10.3], ∆(B) ⊆ B∗ denoting the weak∗

compact Hausdor� space of multiplicative linear functionals on B. Since ∆(B) is weak∗ compact, there
exists a multiplicative linear functional ϕ2 ∈ ∆(B) such that

|Γ((a, 0))(ϕ2)| = ‖Γ((a, 0))‖∞ = sup{|Γ((a, 0))(ψ)| |ψ ∈ ∆(B)},

hence yielding
‖a‖ = ‖(a, 0)‖ = ‖Γ((a, 0))‖∞ = |Γ((a, 0))(ϕ2)| = |ϕ2((a, 0))|.

By the Hahn-Banach theorem [13, Theorem 5.7] there exists a bounded linear functional ϕ1 on Ã such
that ϕ1|B = ϕ2 and ‖ϕ1‖ = ‖ϕ2‖ = 1. Since ϕ1(1Ã) = ϕ2(1Ã) = 1, it follows that ϕ1 is positive
and |ϕ1((a, 0))| = ‖a‖. Let ϕ denote the restriction to A (i.e. ϕ(a) = ϕ1((a, 0)) for all a ∈ A). Since
‖ϕ‖ ≤ ‖ϕ1‖ = 1 and |ϕ(‖a‖−1a)| = ‖a‖−1|ϕ(a)| = 1, it follows that ‖ϕ‖ = 1. Since ϕ is also positive,
the �rst statement follows in the non-unital case. If A is unital, the proof above applies without the
need to pass to unitizations.

From the �rst statement, it now follows that if ϕ(a) = 0 for a normal element a ∈ A and all states
ϕ ∈ S(A), then a = 0. For any a ∈ A, write a = a1 + ia2, where a1, a2 ∈ Asa. If ϕ(a) = 0, then
ϕ(a1) = ϕ(a2) = 0 for all ϕ ∈ S(A), so a1 = a2 = 0, and hence a = 0.

We will also need the next result in the �rst two chapters.

Proposition 0.3. If A is a C∗-algebra and ϕ : A → C is a positive linear functional on A, then
‖ϕ‖ = limα∈A ϕ(eα) for any approximate identity (eα)α∈A in A.

Proof. Let (eα)α∈A be an approximate identity in A. As (ϕ(eα))α∈A is a bounded increasing net in
R+, it follows that the net has a limit λ ≤ ‖ϕ‖ which is also its least upper bound. Let fα ∈ A be
such that f∗αfα = eα for all α ∈ A. Then for each a ∈ (A)1, the Cauchy-Schwarz inequality yields

|ϕ(eαa)|2 = |ϕ(f∗αfαa)|2 ≤ ϕ(af∗αfαa
∗)ϕ(f∗αfα) = ϕ(aeαa

∗)ϕ(eα) ≤ ‖ϕ‖λ.

Taking the limit over A and then the supremum over all a ∈ (A)1 yields ‖ϕ‖2 ≤ ‖ϕ‖λ from which
‖ϕ‖ ≤ λ follows, completing the proof.

The direct sum of Hilbert spaces

Let (Hi)i∈I be a family of Hilbert spaces. The direct sum of the Hilbert spaces (Hi)i∈I is the subset
of the cartesian product

∏
i∈I Hi consisting of all families of elements (ξi)i∈I with ξi ∈ Hi that are

square-summable, i.e. we have
∑
i∈I ‖ξi‖2 <∞, and it is denoted

⊕
i∈I Hi.

To the knowledge and reading experience of the author, many textbooks skip a proof that
⊕

i∈I Hi is
actually a Hilbert space, so we will put one here. Now at least some might have a reason to read this
project...

Proposition 0.4. With coordinatewise addition and scalar multiplication
⊕

i∈I Hi becomes a vector
space, and it becomes a Hilbert space by endowing it with the inner product

〈(ξi)i∈I , (ηi)i∈I〉 =
∑
i∈I
〈ξi, ηi〉, (ξi)i∈I , (ηi)i∈I ∈

⊕
i∈I
Hi.

Proof. Let H =
⊕

i∈I Hi. For (ξi)i∈I , (ηi)i∈I ∈ H and λ ∈ C, then since

‖ξi + ηi‖2 ≤ (‖ξi‖+ ‖ηi‖)2 ≤ 2‖ξi‖2 + 2‖ηi‖2

for all i ∈ I, we have that (ξi + ηi)i∈I ∈ H and (λξi)i∈I ∈ H. Hence H is a vector space with the given
operations.

Once we prove that the form 〈·, ·〉 : H × H → C is well-de�ned, it is easy to check all the wanted
properties of an inner product, namely that it is sesquilinear and positive semi-de�nite. Finally, if we
assume that 〈(ξi)i∈I , (ξi)i∈I〉 = 0 then

∑
i∈I ‖ξi‖2 = 0, so for all i0 ∈ I we have

0 ≤ ‖ξi0‖2 ≤
∑
i∈I
‖ξi‖2 = 0.
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Thus ξi = 0 for all i ∈ I, so (ξi)i∈I = 0.

To prove well-de�nedness, let (ξi)i∈I , (ηi)i∈I ∈ H and de�ne

ξ′i =

{
ξi if ‖ξi‖ ≥ ‖ηi‖
0 otherwise,

η′i =

{
ηi if ‖ξi‖ < ‖ηi‖
0 otherwise.

It is clear for any i ∈ I that ‖ξ′i‖ ≤ ‖ξi‖ and ‖η′i‖ ≤ ‖ηi‖, so we have
∑
i∈I ‖ξ′i‖2 ≤

∑
i∈I ‖ξi‖2 and∑

i∈I ‖η′i‖2 ≤
∑
i∈I ‖ηi‖2. Hence (ξ′i)i∈I , (η

′
i)i∈I ∈ H. Furthermore, we see that ‖ξi‖ ≤ ‖ξ′i + η′i‖ and

‖ηi‖ ≤ ‖ξ′i + η′i‖ for all i ∈ I by mere construction, so we obtain

|〈ξi, ηi〉| ≤ ‖ξi‖‖ηi‖ ≤ ‖ξ′i + η′i‖2, i ∈ I.

Therefore
∑
i∈I |〈ξi, ηi〉| converges, since (ξ′i+η

′
i)i∈I belongs toH because it is a vector space. Therefore

the inner product is well-de�ned.

It remains to prove completeness of the metric induced by the inner product. Let (ξn)n≥1 be a Cauchy
sequence in H with ξn = (ξni )i∈I for n ≥ 1. Then

‖ξni0 − ξ
m
i0 ‖

2 ≤
∑
i∈I
‖ξni − ξmi ‖2

for all n,m ≥ 1, so (ξni )ngeq1 is a Cauchy sequence in Hi for all i ∈ I. Because all Hi are Hilbert
spaces, we obtain the existence of an element ξi ∈ Hi such that ξni → ξi for all i ∈ I. De�ne
ξ = (ξi)i∈I ∈

∏
i∈I Hi. This will be our candidate for a limit, so it remains to prove that ξ ∈ H and

that ξn → ξ.

Start by �xing an ε > 0 and let N ≥ 1 such that ‖ξn− ξm‖2 < ε2

2 for n,m ≥ N , possible since (ξn)n≥1

is a Cauchy sequence. Then for all �nite subsets G ⊆ I and n ≥ N , we have

ε2

2
≥ lim
m→∞

‖ξn − ξm‖2 = lim
m→∞

∑
i∈I
‖ξni − ξmi ‖2

≥ lim
m→∞

∑
i∈G
‖ξni − ξmi ‖2 =

∑
i∈G

lim
m→∞

‖ξni − ξmi ‖2 =
∑
i∈G
‖ξni − ξi‖2

Hence
∑
i∈I ‖ξni − ξi‖2 ≤

ε2

2 for n ≥ N , so ξN − ξ ∈ H. Hence ξ = ξN − (ξN − ξ) ∈ H. Finally, it
follows that ‖ξn − ξ‖ < ε for n ≥ N , so ξn → ξ. Hence H is a Hilbert space.

Along with the construction of the direct sum of Hilbert spaces come some natural maps with obvious
but still neat properties. Let H =

⊕
i∈I Hi and j ∈ I. Let ιj : Hj → H denote the natural injection of

Hj into H for j ∈ I, i.e. (ιjξ)j = ξ and (ιjξ)i = 0 for all i ∈ I with i 6= j. Note that ιj is isometric, so
ιj(Hj) is a closed subspace of H for all j ∈ I. Furthermore, for ξ ∈ Hj and (ηi)i∈I ∈ H then

〈ιjξ, (ηi)i∈I〉 = 〈ξ, ηj〉,

so ι∗j : H → Hj is the projection of H onto the j'th coordinate, and we denote πj = ι∗j . It follows
immediately that πjιj ∈ B(Hj) is the identity on Hj and that Ej = ιjπj ∈ B(H) is the orthogonal
projection onto ιj(Hj). As all the Ei are orthogonal, note that any ξ = (ξi)i∈I ∈ H satis�es

ξ =
∑
i∈I

ιi(ξi) =
∑
i∈I

Eiξ,

so 1H =
∑
i∈I Ei where the series converges strongly.

We introduce some advantageous notation in the cases of some very particular direct sums. For a
Hilbert space H and a non-empty set I, we denote the Hilbert space

⊕
i∈I H by HI . For n ≥ 1 the

Hilbert space
⊕n

i=1H is denoted by Hn.



viii LA BOÎTE À JOUJOUX

The Gelfand-Neimark-Segal construction

For any Banach ∗-algebra A and ϕ ∈ S(A), there exists a GNS representation of A corresponding to
ϕ, consisting of a Hilbert space Hϕ, a ∗-homomorphism πϕ : A → B(Hϕ) and a unit vector ξϕ ∈ Hϕ
such that the subspace

πϕ(A)ξϕ = {πϕ(a)ξϕ | a ∈ A}

is dense in Hϕ and
ϕ(a) = 〈πϕ(a)ξϕ, ξϕ〉, a ∈ A.

If A is unital, then πϕ can be made unital. For a proof of this whole shenanigan, see [24, Theorem
I.9.14]. (Hϕ, πϕ, ξϕ) is called the GNS triple associated with ϕ. It can be proved if ϕ is faithful that
πϕ is faithful as well.

Consider now the Hilbert space H =
⊕

ϕ∈S(A)Hϕ and the map π =
⊕

ϕ∈S(A) πϕ : A → B(H) given
by

π(a)(ηϕ)ϕ∈S(A) = (πϕ(a)ηϕ)ϕ∈S(A), (ηϕ)ϕ∈S(A) ∈ H.

π is a representation, and it is in fact faithful: if π(a)(ηϕ)ϕ∈S(A) = 0 for all (ηϕ)ϕ∈S(A) ∈ H and some
a ∈ A, then πϕ(a)ξϕ = 0 for all ϕ ∈ S(A). Therefore ϕ(a) = 0 for all ϕ ∈ S(A), so a = 0 by Theorem
0.2.

Proposition 0.5. Let (eα)α∈A be an approximate identity for A. Then for all η ∈ H, with H as
de�ned above, we have

‖π(eα)η − η‖ → 0.

Proof. Let η = (ηϕ)ϕ∈S(A) ∈ H and F ⊆ S(A) be a �nite subset such that

‖η − (ηϕ)ϕ∈F ‖2 =
∑
ϕ/∈F

‖ηϕ‖2 <
ε2

25
.

For each ϕ ∈ F , take xϕ ∈ A such that ‖πϕ(xϕ)ξϕ − ηϕ‖ ≤ ε
5 |F |

−1, and take α0 ∈ A such that
‖eαxϕ − xϕ‖ < ε

5 |F |
−1‖(ξϕ)ϕ∈F ‖−1 for all ϕ ∈ F and α ≥ α0. Then for all α ≥ α0,

‖π(eα)η − η‖ ≤ ‖π(eα)η − π(eα)(ηϕ)ϕ∈F ‖+ ‖π(eα)(ηϕ)ϕ∈F − π(eα)(πϕ(xϕ)ξϕ)ϕ∈F ‖
+ ‖π(eα)(πϕ(xϕ)ξϕ)ϕ∈F − (πϕ(xϕ)ξϕ)ϕ∈F ‖+ ‖(πϕ(xϕ)ξϕ)ϕ∈F − (ηϕ)ϕ∈F ‖
+ ‖(ηϕ)ϕ∈F − η‖

<
ε

5
+
∑
ϕ∈F
‖ηϕ − πϕ(xϕ)ξϕ‖+ ‖(ξϕ)ϕ∈F ‖

∑
ϕ∈F
‖πϕ(eαxϕ − xϕ)‖

+
∑
ϕ∈F
‖πϕ(xϕ)ξϕ − ηϕ‖+

ε

5

< ε,

since π and πϕ are contractive for all ϕ ∈ F and (eα) is an approximate identity.

A consequence of the faithfulness of the representation π is this:

Proposition 0.6. Let A be a C∗-algebra, and for a, b ∈ Asa, write a ≤ b if b−a ∈ A+. Then (Asa,≤)
is a partially ordered set. In particular, �nite sums of positive elements are positive.

Proof. It is obvious that ≤ is re�exive. Letting π =
⊕

ϕ∈S(A) πϕ : A → B(H) denote the above
representation, then if a ≤ b and b ≤ a, we have

〈πϕ(b− a)πϕ(c)ξϕ, πϕ(c)ξϕ〉 = ϕ(c∗(b− a)c) ≥ 0

for all ϕ ∈ S(A) so 〈πϕ(b − a)ηϕ, ηϕ〉 ≥ 0 for all ηϕ ∈ Hϕ. Hence 〈π(b − a)η, η〉 ≥ 0 for all η ∈ H.
Likewise one can �nd that −〈π(b − a)η, η〉 = 〈π(a − b)η, η〉 ≥ 0 for all η ∈ H, so 〈π(b − a)η, η〉 = 0
for all η ∈ H, implying π(b − a) = 0 and therefore a = b by faithfulness of π. Finally, if a ≤ b and
b ≤ c, one likewise obtains that 〈π(c − a)η, η〉 ≥ 0 for all η ∈ H, so π(c − a) is positive. Since π is
faithful, π(A) is a C∗-algebra. Hence it follows that π(c − a) = π(x)∗π(x) = π(x∗x) for some x ∈ A,
and therefore c− a = x∗x ∈ A+.
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Von Neumann algebras

The main concern in this project will be the wonderous world of von Neumann algebras, and we will
start out by de�ning these pretty much from scratch. The main tools are the so-called weak and strong
operator topology, although we will be expanding on these concepts in Chapter 2. If one needs a crash
course on locally convex topological vector spaces, the author recommends [13].

Let (Tα)α∈A be a net in B(H) and let T ∈ H.

q The weak operator topology on B(H) is the locally convex Hausdor� topology de�ned by the semi�
norms

T 7→ |〈Tξ, η〉|
for ξ, η ∈ H. Hence Tα → T in the weak operator topology (or weakly) if and only if

〈Tαξ, η〉 → 〈Tξ, η〉

for all ξ, η ∈ H.

q The strong operator topology on B(H) is the locally convex Hausdor� topology de�ned by the
seminorms

T 7→ ‖Tξ‖
where ξ ∈ H. Hence Tα → T in the strong operator topology (or strongly) if and only if

‖Tαξ − Tξ‖ → 0

for all ξ ∈ H.

These topologies are special cases of the so-called point-norm and point-weak topology on B(X) for a
Banach space X; these are de�ned in Appendix A. The reason that these more general topologies are
relegated to an appendix is that we will only need them for a short while. Nonetheless, the results
proved in Appendix A apply for the next couple of results (which we will need right away).

Note that norm convergence in B(H) implies strong operator convergence which in turn implies weak
operator convergence. The project revolves �rst and foremost around the following de�nition:

De�nition 0.1. A von Neumann algebra is a ∗-subalgebra of B(H) that contains the identity operator
1H and is closed in the strong operator topology.

Because norm convergence implies strong operator convergence, it follows that any von Neumann
algebra is a unital C∗-subalgebra of B(H). We will often treat a von Neumann algebra as an algebraic
structure rather than a set of operators on a Hilbert space, and for this reason we might denote the
unit of a von Neumann algebra M by 1M . If we are considering a speci�c Hilbert space H on which
M operates, we will oftentimes denote the unit of M by 1H.

The following proposition is extremely useful for alternate characterisations of von Neumann algebras:

Proposition 0.7. Let ω : B(H)→ C be a linear functional. Then the following are equivalent:

(i) ω is weakly continuous.
(ii) ω is strongly continuous.
(iii) There exist elements ξ1, . . . , ξn, η1, . . . , ηn of H such that ω(T ) =

∑n
i=1〈Tξi, ηi〉.

Proof. See [31, Theorem 16.1] for a direct proof, or just Proposition A.5.

This result implies that the strong operator and weak operator closures of a convex subset of B(H)
are the same (cf. [31, Theorem 16.2] or Corollary A.8), so the notion of strong operator closure in the
de�nition of a von Neumann algebra can be freely replaced by the one of weak operator closure. If M
is a self-adjoint subset of B(H), then its commutant is a von Neumann algebra [31, Proposition 18.1].

The next result is similar to the fact that any bounded increasing sequence in R has a limit which is
also its supremum, allowing for a notion of a supremum in B(H), and it is no overstatement to say
that we will use it a lot. For the record, if (Tα)α∈A in B(H) is a net of self-adjoint operators, then we
say that it is bounded above if supα∈A ‖Tα‖ <∞ or, equivalently, if there exists a self-adjoint operator
T ∈ B(H) such that Tα ≤ T , and that it is increasing if α ≤ β implies Tα ≤ Tβ for all α, β ∈ A.
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Theorem 0.8. Let M be a strongly closed ∗-subalgebra of B(H). If (Tα)α∈A is an increasing net
of self-adjoint operators in M which is bounded above, then there exists T ∈ M such that T is the
strong operator limit of (Tα)α∈A. Moreover, T is the least upper bound of the net, i.e. if S ∈ B(H) is
self-adjoint and satis�es Tα ≤ S for all α ∈ A, then T ≤ S.

Proof. See [31, Theorem 17.1].

In the above case, T is called the supremum of (Tα)α∈A and is denoted by

sup
α∈A

Tα.

In�mums can be similarly de�ned. In particular, any family (Pi)i∈I of mutually orthogonal projections
in M is strong operator-summable: the net (

∑
i∈F Pi)F⊆I (where each F is �nite) converges strongly

to a projection P ∈M satisfying ‖Pξ‖2 =
∑
i∈I ‖Piξ‖2 [31, Corollary 17.4].

The next theorem will be �improved upon� in Chapter 2, but we will need its most basic form imme�
diately: it characterizes von Neumann algebras by means of commutants.

Theorem 0.9 (The von Neumann bicommutant theorem, 1929). Let M be a ∗-subalgebra of B(H)
with 1H ∈M . Then M is a von Neumann algebra if and only if M = M ′′.

Proof. See [27, pp. 12-13].

Note that if M is a self-adjoint subset of B(H) and N is a von Neumann algebra containing M , then
M ′′ ⊆ N . Hence M ′′ is the smallest von Neumann algebra containing M .

The direct sum of von Neumann algebras

Direct sums of Hilbert spaces of course yields a possibility of creating new von Neumann algebras in
a very obvious but also very beautiful manner.

Let (Hi)i∈I be a family of Hilbert spaces and let (Ti)i∈I be a family of operators with Ti ∈ B(Hi)
that satis�es supi∈I ‖Ti‖ <∞. If H =

⊕
i∈I Hi, then the map T : H → H given by (ξi)i∈I 7→ (Tiξi)i∈I

de�nes a bounded linear operator, since

‖T ((ξi)i∈I)‖2 =
∑
i∈I
‖Tiξi‖2 ≤

(
sup
i∈I
‖Ti‖

)2∑
i∈I
‖ξi‖2 <∞.

In this case T is also denoted by (Ti)i∈I . Note that ‖T‖ ≤ supi∈I ‖Ti‖; in fact equality holds. If i ∈ I
and ξi ∈ (Hi)1, then let ξj be the zero vector in Hj for all j ∈ I, j 6= i. Then

‖Tiξi‖2 =
∑
j∈I
‖Tjξj‖2 = ‖T (ξj)j∈I‖2 ≤ ‖T‖2,

so ‖Ti‖ ≤ ‖T‖ for all i ∈ I. Therefore

‖(Ti)i∈I‖ = sup
i∈I
‖Ti‖.

If (Mi)i∈I is a family of ∗-algebras with Mi ⊆ B(Hi) for all i ∈ I, then the subset of B(H) given by

⊕
i∈I

Mi :=

{
T = (Ti)i∈I |Ti ∈Mi for i ∈ I and sup

i∈I
‖Ti‖ <∞

}
is a ∗-subalgebra, where the linear operations, product and adjoint operation are coordinatewise.

Proposition 0.10. If (Mi)i∈I is a family of von Neumann algebras with Mi ⊆ B(Hi) for all i ∈ I,
then M =

⊕
i∈I Mi is a von Neumann algebra on H =

⊕
i∈I Hi.
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Proof. We will use the maps ιi, πi and Ei de�ned after the proof of Proposition 0.4. De�ning

B =

{
B = (Bi)i∈I |Bi ∈M ′

i for i ∈ I and sup
i∈I
‖Bi‖ <∞

}
,

it is readily seen that M and B are unital ∗-algebras in B(H) and that every operator in M commutes
with any operator in B, i.e. M ⊆ B′. Furthermore, Ei ∈ B for all i ∈ I. Supposing that T ∈ B(H)
commutes with any operator in B, i.e. T ∈ B′, then TEi = EiT for all i ∈ I. If we de�ne Ti : Hi → Hi
by Ti = πiTιi, we see that ‖Ti‖ ≤ ‖T‖ for all i ∈ I; furthermore, for j ∈ I, then if ξ ∈ Hj , we have

((Ti)i∈Iιj(ξ))j = πjTιj(ξ) = (Tιj(ξ))j

and for k 6= j,
(Tιj(ξ))k = (EjTιj(ξ))k = (ιjTj(ξ))k = 0 = ((Ti)i∈Iιj(ξ))k,

implying Tιj(ξ) = (Ti)i∈Iιj(ξ). Since every element in H is a sum of elements ιj(ξ), it follows that
T = (Ti)i∈I by continuity. Hence if B ∈ B with B = (Bi)i∈I , then TiBi = BiTi for all i ∈ I. This
implies that Ti commutes with all operators in M ′

i , so Ti ∈M ′′
i . Therefore

B′ ⊆
⊕
i∈I

M ′′
i .

Since each Mi is a von Neumann algebra, we have B′ ⊆M by the von Neumann bicommutant theorem
and hence M is a von Neumann algebra.

In the above case M is called the direct sum of the von Neumann algebras (Mi)i∈I . Let j ∈ I. Note
that for T = (Ti)i∈I in M , then πj(Ti)i∈Iιj = Tj ∈Mj . If T ∈Mj , then by de�ning

T̃ = (Ti)i∈I

where Tj = T and Ti = 0 for all i 6= j we see that T̃ ∈M and T = πj T̃ ιj ∈ πjM ιj , hence allowing us
to identify Mj with πjM ιj . The proof above also yields the following important corollary:

Corollary 0.11. If (Mi)i∈I is a family of von Neumann algebras and M =
⊕

i∈I Mi, then

M ′ =
⊕
i∈I

M ′
i .



CHAPTER 1

TENSOR PRODUCTS OF INVOLUTIVE ALGEBRAS

It may seem curious that the project contains a chapter on tensor products. Fact is that I have not
encountered a de�nition of the algebraic tensor product I really liked in any of the material I have been
assimilating for the project, so I thought I might give it my own spin. As one might have noticed from
the table of contents, the chapter not only concerns algebraic tensor products, but related notions for
C∗-algebras and von Neumann algebras. Of course these notions rely heavily on the vector space case,
so there is really no good reason not to begin at the beginning.

1.1 The algebraic tensor product

We note �rst that the de�nition of tensor products will not di�er in any way from the one encountered
in basic homological algebra; the vector spaces can be replaced with modules over any associative ring
with a multiplicative unit to de�ne tensor products in a more general case, but as we will only be
working with vector spaces, there is no need to generalize.

De�nition 1.1. Let X and Y be vector spaces. An algebraic tensor product of X and Y is a vector
space T together with a bilinear map τ : X × Y → T satisfying the following property: For any pair
(V, σ) where V is a vector space and σ is a bilinear map σ : X × Y → V , there exists a unique linear
map σ̃ : T → V such that σ = σ̃ ◦ τ , i.e. the following diagram commutes:

X × Y τ //

σ
##GG

GG
GG

GG
G T

!σ̃��
V

Keep in mind that there is another way to de�ne it: we could have taken a speci�c vector space and
proved that it indeed satis�ed the needed properties of a tensor product. This is of course equivalent
to proving that the tensor product exists � which we will later show that it actually does. The idea
behind not beginning in this manner is that we do not really need to know what speci�c vector space
it is to work with the tensor product. The following theorem possibly makes this even clearer.

Theorem 1.1 (Uniqueness of tensor products). Let X and Y be vector spaces, and let (T, τ) and
(T ′, τ ′) be algebraic tensor products of X and Y . Then there is a unique isomorphism α : T → T ′ such
that τ ′ = α ◦ τ .

Proof. The property of the tensor product (T, τ) used on the pair (T ′, τ ′) yields a unique linear map
α : T → T ′ such that τ ′ = α ◦ τ . Hence uniqueness is proven, and it only remains to show that it is
an isomorphism. First of all, note that the property of (T ′, τ ′) used on (T, τ) likewise yields a unique
linear map β : T ′ → T such that τ = β ◦ τ ′. Moreover, the property of (T, τ) used on itself yields a
unique linear map γ : T → T such that τ = γ ◦ τ . Because

(β ◦ α) ◦ τ = β ◦ τ ′ = τ,

then both β ◦α and the identity on T also satisfy this equation, so they must be equal. Analoguously,
one sees that α ◦ β is the identity on T ′, proving that α is an isomorphism with inverse β.

The above theorem tells us that once we have constructed an algebraic tensor product of two vector
spaces, we have determined the vector space structure of any algebraic tensor product completely. The
property in De�nition 1.1 hence fully characterizes them: it is their universal property . The uniqueness
of tensor products also allows us to speak of the algebraic tensor product of two vector spaces X and

1



2 CHAPTER 1. TENSOR PRODUCTS OF INVOLUTIVE ALGEBRAS

Y , and we will denote it by X � Y . Elements of X � Y are called tensors, and for any x ∈ X and
y ∈ Y , we de�ne

x⊗ y := τ(x, y) ∈ X � Y ;

such an element is called an elementary tensor . Some nice properties hold for these in particular:

Proposition 1.2 (Tensor calculus). Let X and Y be vector spaces. Then

(i) (x1 + x2)⊗ y = x1 ⊗ y + x2 ⊗ y for x1, x2 ∈ X and y ∈ Y ,
(ii) x⊗ (y1 + y2) = x⊗ y1 + x⊗ y2 for x ∈ X and y1, y2 ∈ Y and
(iii) (λx)⊗ y = x⊗ (λy) = λ(x⊗ y) for x ∈ X, y ∈ Y and λ ∈ C.

Proof. This just follows from bilinearity of τ .

It turns out that any element of the algebraic tensor product is a �nite sum of elementary tensors:

Proposition 1.3 (A picture of the tensor product). Let X and Y be vector spaces and let v ∈ X �Y .
Then there is a positive integer n ≥ 1 as well as x1, . . . , xn ∈ X and y1, . . . , yn ∈ Y such that

v =

n∑
i=1

xi ⊗ yi.

Proof. Let V consist of all �nite sums of elementary tensors, and de�ne σ : X × Y → V by

σ(x, y) = x⊗ y.

V is clearly a vector space in itself. Since σ is bilinear, the universal property of X � Y yields a
linear map σ̃ : X � Y → V ⊆ X � Y such that σ(x, y) = σ̃(τ(x, y)) for all x ∈ X and y ∈ Y . Since
σ(x, y) = id(τ(x, y)) as well, where id denotes the identity on X � Y , it follows by uniqueness that
σ̃ = id. Hence it follows that the identity maps into V , implying X � Y = V .

It is quite amazing how much we have already derived from the very simple de�ning property of tensor
products. The above proposition also tells us that we might only need check properties of linear maps
for elementary tensors.

We now prove a few theorems concerning maps from tensor products.

Proposition 1.4 (Tensor product maps). Let X, Y , V and W be vector spaces. If ϕ : X → V and
ψ : Y →W are linear maps, then there is a unique linear map

ϕ� ψ : X � Y → V �W

such that ϕ� ψ(x⊗ y) = ϕ(x)⊗ ψ(y) for all x ∈ X and y ∈ Y .

Proof. The map X × Y → V �W given by (x, y) 7→ ϕ(x) ⊗ ψ(y) is bilinear, so we just apply the
universal property of X � Y .

Proposition 1.5 (Product maps). Let X and Y be vector spaces and let C be an algebra. If ϕ : X → C
and ψ : Y → C are linear maps, then there is a unique linear map

ϕ× ψ : X � Y → C

such that ϕ× ψ(x⊗ y) = ϕ(x)ψ(y) for all x ∈ X and y ∈ Y .

Proof. The map X × Y → C given by (x, y) 7→ ϕ(x)ψ(y) is bilinear, and we again apply the universal
property of X � Y .

Corollary 1.6 (Tensor product functionals). Let X and Y be vector spaces. If ϕ : X → C and
ψ : Y → C are linear functionals, then there is a unique linear functional

ϕ� ψ : X � Y → C

such that ϕ� ψ(x⊗ y) = ϕ(x)ψ(y) for all x ∈ X and y ∈ Y .
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Proof. This follows from Proposition 1.5 or from Proposition 1.4 using the fact that the map C�C→ C
satisfying a⊗ b 7→ ab is an isomorphism (hence the notation).

Corollary 1.7 (Conjugate linear tensor product functionals). Let X and Y be vector spaces. If
ϕ : X → C and ψ : Y → C are conjugate linear functionals, i.e. additive maps that satisfy

ϕ(λx) = λϕ(x), ψ(µx) = µψ(x), λ, µ ∈ C, x ∈ X, y ∈ Y,

then there exists a conjugate linear tensor product functional

ϕ� ψ : X � Y → C

such that ϕ� ψ(x⊗ y) = ϕ(x)ψ(y) for all x ∈ X and y ∈ Y .

Proof. This follows from Corollary 1.6 applied to the linear functionals ϕ : X → C and ψ : Y → C given
by ϕ(x) = ϕ(x) and ψ(y) = ψ(y) respectively, and then conjugating the resulting linear functional.

All of this, however, does not diminish the fact that our deductions would have no purpose if tensor
products did not exist. Luckily they do.

Theorem 1.8. If X and Y are vector spaces, there exists an algebraic tensor product of X and Y .

Proof. Considering X×Y as a discrete topological space, let T̃ = Cc(X×Y ) denote the vector space of
compactly supported functions over X × Y . For x ∈ X and y ∈ Y , let χ(x,y) denote the characteristic
function of the one-point set {(x, y)} ⊆ X × Y . Since a compact subset of a discrete topological space
is necessarily �nite, it follows that the set

{χ(x,y) |x ∈ X, y ∈ Y }

constitutes a basis of T̃ , as any element therein is a unique �nite linear combination of these elements.
Let T̃0 denote the linear subspace of T̃ spanned by all elements of the four following types:

(i) χ(x1+x2,y) − χ(x1,y) − χ(x2,y) for x1, x2 ∈ X and y ∈ Y ;
(ii) χ(x,y1+y2) − χ(x,y1) − χ(x,y2) for x ∈ X and y1, y2 ∈ Y ;
(iii) χ(λx,y) − λχ(x,y) for x ∈ X, y ∈ Y and λ ∈ C;
(iv) χ(x,λy) − λχ(x,y) for x ∈ X, y ∈ Y and λ ∈ C.

Now, de�ne T := T̃ /T̃0 and let π : T̃ → T be the canonical quotient mapping, i.e.

π(f) = f + T̃0, f ∈ T̃ .

Furthermore, de�ne a map τ̃ : X ×Y → T̃ by τ(x, y) = χ(x,y). From how we de�ned T̃0, it follows that
τ := π ◦ τ̃ is bilinear. We claim that T together with τ is a tensor product of X and Y .

Now let V be a vector space and let σ : X×Y → V be a bilinear map. De�ne a map σ̂ : T̃ → V through
the identity σ̂(χ(x,y)) = σ(x, y) by extending linearly. Elements in T̃0 of the four aforementioned types
are sent to the zero vector because of bilinearity of σ, so we obtain an induced linear map σ̃ : T → V
de�ned by

σ̃(f + T̃0) = σ̂(f), f ∈ T̃ .

Hence
σ̃(τ(x, y)) = σ̃(π(τ̃(x, y))) = σ̃(χ(x,y) + T̃0) = σ̂(χ(x,y)) = σ(x, y)

for all x ∈ X and y ∈ Y , so σ = σ̃ ◦ τ . If η : T → V is another linear map satisfying σ = η ◦ τ , note
that η(τ(x, y)) = σ̃(τ(x, y)) and hence

η(χ(x,y) + T̃0) = σ̃(χ(x,y) + T̃0)

for all x ∈ X and y ∈ Y . Since η and σ̃ agree on a spanning set of T , it follows that they are equal.
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We now turn our attention to C∗-algebras. As two C∗-algebras are vector spaces themselves, their
algebraic tensor product exists, but the question is whether one can endow it with a C∗-algebra
structure. To do this, one must of course give it a multiplication and an involution �rst, and that
is what we will attempt to do, keeping in mind that we want these operations to look as natural (or
obvious) as possible. The proofs required for this need some knowledge of when tensors are linearly
independent, and Zorn's lemma will help us along the way: it is used in the proof of the next theorem.

Theorem 1.9. Every linearly independent subset V of a vector space X can be extended to an algebraic
basis for X.

Proof. Let S be the collection of all linearly independent subsets of X containing V . S is non-empty
since V ∈ S , and if J is a totally ordered subset of S , let J =

⋃
W∈JW . If λ1x1 + . . .+ λnxn = 0 for

x1, . . . , xn ∈ J , then xi ∈Wi for some Wi ∈ J. Pick the largest of the Wi in J; since all xi are in it and
it is linearly independent, it follows that J is a linearly independent subset and an upper bound for all
W ∈ J inclusion-wise. Hence Zorn's lemma [13, Lemma 0.2] yields a maximal element S of S . Let W
be the linear span of S, and assume for contradiction that W 6= X. Then there exists x ∈ X \W . If

λx+ λ1x1 + . . .+ λnxn = 0

for x1, . . . , xn ∈ S, then −λx = λ1x1 + . . . + λnxn, so that −λx ∈ W . Since x /∈ W , we have λ = 0.
Therefore λ1 = . . . = λn = 0, so S ∪ {x} is a linearly independent subset of X containing V , but this
contradicts the maximality of S. Hence S is an algebraic basis for X.

Proposition 1.10 (Linear independence). Let X and Y be vector spaces. If x1, . . . , xn ∈ X are
arbitrary, y1, . . . , yn ∈ Y are linearly independent and

∑n
i=1 xi ⊗ yi = 0, then x1 = . . . = xn = 0.

Proof. First of all, {y1, . . . , yn} can be extended to an algebraic basis S = (sα)α∈A of Y by Theorem
1.9. Let αj be the α ∈ A such that sαj = yj for all j = 1, . . . , n. For each j, we may then de�ne a
linear functional ϕj on Y by

ϕj

(∑
α

λαsα

)
=
∑
α

λαt
j
α,

where λα ∈ C, the sum
∑
α λαsα is �nite and the family (tjα)α∈A is given by tjα = 1 for α = αj and

tjα = 0 for all α 6= αj . It is clear that linear functionals on a vector space separate points in the above
way, so it now su�ces to prove that ψ(xj) = 0 for all linear functionals ψ on X and all j = 1, . . . , n.
This follows from the construction of Corollary 1.6 as

0 = ψ � ϕj

(
n∑
i=1

xi ⊗ yi

)
=

n∑
i=1

ψ(xi)ϕj(yi) = ψ(xj)

for any linear functional ψ on X.

The above linear independence result has a lot of nice consequences: it tells us something about possible
bases for algebraic tensor products and what happens to tensor product maps of injective maps. The
next three results tell us what needs to be known in order to go further and are especially essential
when uncovering tensor product notions for C∗-algebras.

Corollary 1.11 (Bases for tensor products). Let X and Y be vector spaces. If (xi)i∈I ⊆ X and
(yj)j∈J ⊆ Y are bases, then (xi ⊗ yj)(i,j)∈I×J ⊆ X � Y is a basis of X � Y . In particular,

dim(X � Y ) = dim(X) dim(Y ).

Proof. Because X � Y is spanned by elementary tensors, and any elementary tensor is a �nite linear
combination of elementary tensors of the form xi ⊗ yj , X � Y is spanned by the above set. Assume
that ∑

(i,j)∈A

λi,j(xi ⊗ yj) = 0

for some �nite subset A ⊆ I × J . Let B ⊆ J denote the subset of all j ∈ J such that (i, j) ∈ A for
some i ∈ I, and for j ∈ B, let Ij consist of all i ∈ I such that (i, j) ∈ A. Then

0 =
∑

(i,j)∈A

λi,j(xi ⊗ yj) =
∑
i∈B

∑
j∈Ji

λi,jxi

⊗ yj .
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It then follows from Proposition 1.10 that
∑
j∈Ji λi,jxj = 0 for all i ∈ B. Hence for any i ∈ B we

obtain λi,j = 0 for all j ∈ Ji using linear independence of the xj . Hence λi,j = 0 for all (i, j) ∈ A.

The next corollary comes in handy later.

Corollary 1.12 (Unique representations). Let X and Y be vector spaces. If {yi}i∈I ⊆ Y is a basis
and z ∈ X � Y , then there exists a unique set (xi)i∈I ⊆ X such that z =

∑
i∈I xi ⊗ yi, where only

�nitely many of the xi are non-zero.

Proof. Let x′j ∈ X and y′j ∈ Y , j = 1, . . . , n, such that z =
∑n
j=1 x

′
j ⊗ y′j . For each j = 1, . . . , n there

exists a family (λji)i∈I such that y′j =
∑
i∈I λjiyi, where only �nitely many of the λji are non-zero.

Let I0 denote the �nite set of i ∈ I such that λji 6= 0 for some j = 1, . . . , n, so that y′j =
∑
i∈I0 λjiyi.

Hence we can write z as a �nite sum

z =

n∑
j=1

∑
i∈I0

λjix
′
j ⊗ yi =

∑
i∈I0

 n∑
j=1

λjix
′
j

⊗ yi =
∑
i∈I

 n∑
j=1

λjix
′
j

⊗ yi,
so by putting xi =

∑n
j=1 λjix

′
j we have found a family of the wanted form. This family is unique: if∑

i∈I xi ⊗ yi =
∑
i∈I x

′
i ⊗ yi, then by letting I1 consist of the i such that either xi 6= 0 or x′i 6= 0, I1

is �nite and Proposition 1.10 yields xi = x′i for all i ∈ I1. For i ∈ I \ I1, xi = x′i = 0, so the families
(xi)i∈I and (x′i)i∈I are equal.

Proposition 1.13. Let X, Y , V and W be vector spaces. If ϕ : X → V and ψ : Y →W are injective
linear maps, then the tensor product map ϕ� ψ : X � Y → V �W is injective.

Proof. Let v ∈ X � Y such that ϕ � ψ(v) = 0 and write v =
∑n
i=1 xi ⊗ yi for xi ∈ V and yi ∈ W ,

where i = 1, . . . , n. Choose a basis (x′j)
m
i=1 for the linear span of the xi, so that

v =

n∑
j=1

x′j ⊗

(
n∑
i=1

λijyi

)

for numbers λij ∈ C. As
n∑
j=1

ϕ(x′j)⊗ ψ

(
n∑
i=1

λijyi

)
= 0

by assumption and ϕ is injective, it follows from Proposition 1.10 that ψ(
∑n
i=1 λijyi) = 0 and hence∑n

i=1 λijyi for all j = 1, . . . ,m, so v = 0.

We are now �nally ready to jump right onto the C∗-algebra train. As one might guess, there are
natural ways to de�ne the multiplication and involution of a tensor product of ∗-algebras � not just
C∗-algebras � and the proofs concern whether these natural operations are well-de�ned.

Proposition 1.14. Let A and B be ∗-algebras. The tensor product A�B has a multiplication de�ned
by (∑

i

ai ⊗ bi

)∑
j

cj ⊗ dj

 =
∑
i,j

(aicj)⊗ (bidj).

Proof. Once we prove that the above multiplication is well-de�ned, one can straightforwardly check
that it indeed satis�es the axioms required for it to be a true multiplication. We will construct the
above multiplication using the universal property of the tensor product.

Consider �rst the vector space L(A� B) of all linear maps A� B → A� B. Let Ma : A → A be left
multiplication by a ∈ A, i.e. the map x 7→ ax, and let Mb : B → B denote left multiplication by b ∈ B.
Now Proposition 1.4 yields a unique linear map Ma �Mb ∈ L(A� B) such that

Ma �Mb(a
′ ⊗ b′) = (aa′)⊗ (bb′)
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for all a′ ∈ A, b′ ∈ B. De�ne ϕ : A×B → L(A�B) by ϕ(a, b) = Ma�Mb. We claim that ϕ is actually
bilinear. For instance, for a1, a2 ∈ A and b ∈ B, note that the sum Ma1 �Mb + Ma2 �Mb is also a
linear map A� B → A� B. For all a′ ∈ A and b′ ∈ B we then have

(Ma1
�Mb +Ma2

�Mb)(a
′ ⊗ b′) = ((a1 + a2)a′)⊗ (bb′) = Ma1+a2

�Mb(a
′ ⊗ b′),

but since Ma1+a2
�Mb was unique with this property, we must have

ϕ(a1 + a2, b) = M(a1+a2) �Mb = Ma1 �Mb +Ma2 �Mb = ϕ(a1, b) + ϕ(a2, b).

The rest of the desired properties follow similarly.

Universality now yields a linear map M : A � B → L(A � B) such that M(a ⊗ b) = Ma �Mb. The
map (A� B)2 → A�B given by (x, y) 7→M(x)y then de�nes the above multiplication; indeed,

M

(∑
i

ai ⊗ bi

)∑
j

cj ⊗ dj

 =
∑
i,j

Mai �Mbi(cj ⊗ dj) =
∑
i,j

(aicj)⊗ (bidj).

This proves that A� B can be endowed with an algebra structure.

The case of the involution is a little trickier.

Proposition 1.15. Let A and B be ∗-algebras. There exists a unique involution ∗ : A � B → A � B
such that

(a⊗ b)∗ = a∗ ⊗ b∗, a ∈ A, b ∈ B.

Proof. Uniqueness follows from the requirement that it satis�es the above equation, and indeed the
equation ensures that there is only one possible way to de�ne it, namely(

n∑
i=1

ai ⊗ bi

)∗
=

n∑
i=1

a∗i ⊗ b∗i .

The only concern we might have is whether this map is well-de�ned, and it boils down to proving
that

∑n
i=1 ai ⊗ bi = 0 implies

∑n
i=1 a

∗
i ⊗ b∗i = 0. Choose a basis (ei)

m
i=1 of the linear span of the set

{b1, . . . , bn} and write bi =
∑m
k=1 λijej with λij ∈ C for 1 ≤ i ≤ n. Then

0 =

n∑
i=1

ai ⊗

 m∑
j=1

λijej

 =

n∑
i=1

 m∑
j=1

λijai

⊗ ej .
Hence, Proposition 1.10 yields

∑m
j=1 λijai = 0 and thus

∑m
j=1 λija

∗
i = 0 for all 1 ≤ i ≤ n. Therefore

n∑
i=1

a∗i ⊗ b∗i =

n∑
i=1

a∗i ⊗

 m∑
j=1

λije
∗
j

 =

n∑
i=1

 m∑
j=1

λija
∗
i

⊗ e∗j = 0,

so the map is well-de�ned. The axioms are easily checked, proving that it is indeed an involution.

Before something nearly completely di�erent, we introduce two propositions about tensor product
maps over ∗-algebras.

Proposition 1.16 (Tensor product ∗-homomorphisms). Let A, B, C and D be ∗-algebras and let
ϕ : A → C and ψ : B → D be ∗-homomorphisms. Then the tensor product map ϕ� ψ : A�B → C �D
is also a ∗-homomorphism.

Proof. This follows from straightforward calculations.

Proposition 1.17 (Product ∗-homomorphisms). Let A, B and C be ∗-algebras and let πA : A → C and
πB : B → C be ∗-homomorphisms with commuting ranges. Then the product map ϕ× ψ : A�B → C is
a ∗-homomorphism.
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Proof. This is also straightforward. The requirement of commuting ranges is used for proving that
ϕ× ψ preserves adjoints.

We now need to make an important digression in order to use our tensor products of ∗-algebras and
hence C∗-algebras to the fullest. Recall that any C∗-algebra has a faithful representation on a Hilbert
space (see viii). Since we can construct the algebraic tensor product of two Hilbert spaces, one could
then ask if there for any two C∗-algebras A and B with representations on Hilbert spaces H and K
exists a representation of A � B on a Hilbert space related to H � K. However, this is a rather big
question to ask at the moment: we do not even know whether A�B has a well-de�ned norm, let alone
a C∗-algebra structure, and how would we construct an inner product space structure on H�K? We
cannot have our cake and eat it too, so we will digress for a moment and look into the Hilbert space
situation.

Recall what we mean by a Hilbert space completion: if V is an inner product space, then V has
a unique Hilbert space completion (H, ρ), where H is a Hilbert space and ρ is a linear and inner
product-preserving map V → H with dense range [5, Theorem 23]. It is commonplace to denote
ρ(x) ∈ H by x for all x ∈ V , implying that V lies inside H (although strictly speaking, it is not always
so).

If x ∈ H � K for two Hilbert spaces H and K, then we can write x =
∑n
i=1 ξi ⊗ ηi. Choosing an

orthonormal basis in H for the Hilbert space spanned by the vectors ξ1, . . . , ξn, moving around terms
yields that x is of the form x =

∑m
j=1 ej ⊗ η′j for an orthonormal set of vectors (ej)

m
j=1 and some set

of vectors (η′j)
m
j=1 in K. We use this in some of the upcoming proofs.

Proposition 1.18 (Tensor product of Hilbert spaces). Let H and K be Hilbert spaces. Then H � K
is an inner product space with respect to the inner product〈∑

i∈I
ξi ⊗ ηi,

∑
j∈J

ξ′j ⊗ η′j

〉
=
∑
i,j

〈ξi, ξ′j〉〈ηi, η′j〉. (1.1)

The Hilbert space completion of H�K is denoted H⊗K.

Proof. The question is whether it is even possible to de�ne an inner product as in (1.1). We will show
that there exists a sesquilinear form 〈·, ·〉 : H�K×H�K → C that satis�es (1.1). Let C = (H�K)∗,c

be the vector space of conjugate linear functionals on H�K. For (ξ, η) ∈ H×K, the maps x 7→ 〈ξ, x〉
and y 7→ 〈η, y〉 are conjugate linear functionals, so by Corollary 1.7, there exists f(ξ,η) ∈ C such that

f(ξ,η)(x⊗ y) = 〈ξ, x〉〈η, y〉, x ∈ H, y ∈ K.

We now claim that the map σ : H × K → C given by ϕ(ξ, η) = f(ξ,η) is bilinear. For instance, for
ξ1, ξ2, x ∈ H and η, y ∈ K, note that

f(ξ1+ξ2,η)(x⊗ y) = 〈ξ1 + ξ2, x〉〈η, y〉 = 〈ξ1, x〉〈η, y〉+ 〈ξ2, x〉〈η, y〉 = f(ξ1,η)(x⊗ y) + f(ξ2,η)(x⊗ y),

so the conjugate linear functionals f(ξ1+ξ2,η) and f(ξ1,η) +f(ξ2,η) agree on all elementary tensors. Hence
they must agree on all of H�K, yielding equality. The rest of the properties of a bilinear map follows
similarly.

Using the universal property of H � K there exists a unique linear map σ̃ : H � K → C such that
σ̃(ξ ⊗ η) = f(ξ,η) for all ξ ∈ H and η ∈ K. De�ne 〈·, ·〉 : H�K ×H�K → C by

〈v, w〉 = σ̃(v)(w), v, w ∈ H �K.

Then it is easy to see that 〈·, ·〉 is a sesquilinear form satisfying (1.1) and that 〈v, w〉 = 〈w, v〉 for all
v, w ∈ H�K. Furthermore, if (ei)i∈I is a �nite set of orthonormal vectors in H and (ηi)i∈I is a family
of vectors in mK, we see that〈∑

i∈I
ei ⊗ ηi,

∑
i∈I

ei ⊗ ηi

〉
=
∑
i,j∈I
〈ei, ej〉〈ηi, ηj〉 =

∑
i∈I
‖ηi‖2.

This proves that 〈v, v〉 ≥ 0 for all v ∈ H � K by the remark made before the statement of the
proposition. Moreover, if the above sum equals 0, then ηi = 0 for all i ∈ I and hence

∑
i∈I ei⊗ ηi = 0,

yielding that 〈·, ·〉 is an inner product.
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Thus we obtain our Hilbert space! Note that for ξ ∈ H and η ∈ K, the equality

‖ξ ⊗ η‖ = ‖ξ‖‖η‖

holds: we express this by saying that the norm is a cross-norm.

It is worth noting that for an arbitrary Hilbert space H, the inner product space H � Cn is already
complete with respect to the norm. Since any element v ∈ H � Cn has a unique representation of the
form

v =

n∑
i=1

ξi ⊗ ei, ξi ∈ H

with (ei)
n
i=1 denoting the canonical basis of Cn, then the map H� Cn → Hn by

n∑
i=1

ξi ⊗ ei 7→ (ξ1, . . . , ξn)

is an inner product-preserving isomorphism, so H� Cn is a complete metric space. Hence we obtain

H⊗ Cn = H� Cn.

We now want to look into whether we can create operators over tensor products from given operators.
If S ∈ B(H) and T ∈ B(K), then we can consider the tensor product map S � T : H�K → H�K by
Proposition 1.4. It turns out that it can be extended to H⊗K and has some nice additional properties.

Proposition 1.19 (Tensor product operators). If S ∈ B(H) and T ∈ B(K), then there is a unique
linear operator S ⊗ T ∈ B(H⊗K) such that

S ⊗ T (x⊗ y) = Sx⊗ Ty, x ∈ H, y ∈ K.

Moreover, ‖S ⊗ T‖ = ‖S‖‖T‖.

Proof. We �rst consider S = 1H. If v ∈ H �K, write v =
∑n
i=1 ei ⊗ ηi for an orthonormal set (ei)

n
i=1

in H and a set of vectors (ηi)
n
i=1 in K and note that ‖v‖2 =

∑n
i=1 ‖ηi‖2. Then

‖1H � T (v)‖2 =

∥∥∥∥∥
n∑
i=1

ei ⊗ Tηi

∥∥∥∥∥
2

=

n∑
i,j=1

〈ei, ej〉〈Tηi, Tηj〉 =

n∑
i=1

‖Tηi‖2 ≤ ‖T‖2
n∑
i=1

‖ηi‖2 = ‖T‖2‖v‖2.

Then by Proposition A.1 there exists a unique bounded operator 1H ⊗ T ∈ B(H ⊗ K) such that
1H ⊗ T |H�K = 1H � T with ‖1H ⊗ T‖ ≤ ‖T‖. In the same manner one obtains an unique extension
S ⊗ 1K ∈ B(H⊗K) of S � 1K with ‖S ⊗ 1K‖ ≤ ‖S‖. We now de�ne

S ⊗ T := (S ⊗ 1K)(1H ⊗ T ).

It then follows that ‖S ⊗ T‖ ≤ ‖S‖‖T‖ and that S ⊗ T |H�K = S � T . Hence it is also unique
with the elementary tensor property. To prove ‖S ⊗ T‖ ≥ ‖S‖‖T‖, take sequences (ξn)n≥1 and
(ηn)n≥1 in (H)1 and (K)1 respectively such that ‖S‖ = limn→∞ ‖Sξn‖ and ‖T‖ = limn→∞ ‖Tηn‖. As
‖ξn ⊗ ηn‖ = ‖ξn‖‖ηn‖ ≤ 1 for all n ≥ 1 and

‖S ⊗ T (ξn ⊗ ηn)‖ = ‖Sξn‖‖Tηn‖ → ‖S‖‖T‖,

we obtain ‖S ⊗ T‖ ≥ ‖S‖‖T‖, completing the proof.

It is easily seen that these tensor product operators actually behave well:

Proposition 1.20 (Tensor product operator calculus). It holds that

(i) (S1 + S2)⊗ T = S1 ⊗ T + S2 ⊗ T for S1, S2 ∈ B(H) and T ∈ B(K),
(ii) S ⊗ (T1 + T2) = S ⊗ T1 + S ⊗ T2 for S ∈ B(H) and T1, T2 ∈ B(K),
(iii) (λS)⊗ T = S ⊗ (λT ) = λ(S ⊗ T ) for S ∈ B(H), T ∈ B(K) and λ ∈ C,
(iv) (S ⊗ T )∗ = S∗ ⊗ T ∗ for S ∈ B(H) and T ∈ B(K), and
(v) (S1 ⊗ S2)(T1 ⊗ T2) = (S1T1)⊗ (S2T2) for S1, S2 ∈ B(H) and T1, T2 ∈ B(K).
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(vi) 1H ⊗ 1K = 1H⊗K.

Proof. Most of the above follow from the uniqueness criterion in Proposition 1.19; for (iv), note that
for ξ1, ξ2 ∈ H and η1, η2 ∈ K we have

〈(S ⊗ T )∗(ξ1 ⊗ η1), ξ2 ⊗ η2〉 = 〈ξ1 ⊗ η1, Sξ2 ⊗ Tη2〉
= 〈ξ1, Sξ2〉〈η1, Tη2〉
= 〈S∗ξ1, ξ2〉〈T ∗η1, η2〉
= 〈S∗ξ1 ⊗ T ∗η1, ξ2 ⊗ η2〉
= 〈(S∗ ⊗ T ∗)(ξ1 ⊗ η1), ξ2 ⊗ η2〉.

By linearity and continuity, it follows that (S⊗T )∗(ξ⊗ η) = (S∗⊗T ∗)(ξ⊗ η) for all ξ ∈ H and η ∈ K,
so that (iv) follows from uniqueness.

We remark that we have ∗-isomorphisms

B(H) ∼= B(H)⊗ C1K := {S ⊗ 1K |S ∈ B(H)} ⊆ B(H⊗K)

B(K) ∼= C1H ⊗B(K) := {1H ⊗ T |T ∈ B(K)} ⊆ B(H⊗K)

by considering the maps S 7→ S ⊗ 1K and T 7→ 1H ⊗ T . Also, B(H) ⊗ C1K and C1H ⊗ B(K) are
commuting ∗-subalgebras in B(H⊗K), giving us the following result.

Corollary 1.21. Let H and K be Hilbert spaces. There is a natural injective ∗-homomorphism

π : B(H)�B(K)→ B(H⊗K)

satisfying π(S ⊗ T ) = S ⊗ T for all S ∈ B(H) and T ∈ B(K).

Proof. Use Proposition 1.17 on the aforementioned ∗-isomorphisms to obtain the ∗-homomorphism. To
show that it is injective, we must show that if

∑n
i=1 Si⊗Ti ∈ B(H⊗K) is zero, then the corresponding

sum of tensors
∑n
i=1 Si⊗Ti ∈ B(H)�B(K) is zero as well. By using the same method as in Proposition

1.13, we may assume that the operators S1, . . . , Sn are linearly independent. By letting ξ1, ξ2 ∈ H and
η1, η2 ∈ K and noting that

0 =

〈(
n∑
i=1

Si ⊗ Ti

)
ξ1 ⊗ η1, ξ2 ⊗ η2

〉

=

n∑
i=1

〈(Si ⊗ Ti)ξ1 ⊗ η1, ξ2 ⊗ η2〉

=

n∑
i=1

〈Siξ1, ξ2〉〈Tiη1, η2〉

=

〈
n∑
i=1

〈Tiη1, η2〉Siξ1, ξ2

〉
,

then since the above holds for all ξ2 ∈ H, we must have
∑n
i=1〈Tiη1, η2〉Siξ1 = 0 for all ξ1 ∈ H. Hence

n∑
i=1

〈Tiη1, η2〉Si = 0,

so by linear independence of the Si, we have 〈Tiη1, η2〉 = 0 for all η1, η2 ∈ K, so Ti = 0 for all
i = 1, . . . , n. Hence π is injective.

This then yields the following important corollary.

Corollary 1.22. Given two representations πA : A → B(H) and πB : B → B(K) of ∗-algebras A and
B, there is an induced representation

πA � πB : A� B → B(H⊗K)

such that πA � πB(a ⊗ b) = πA(a) ⊗ πB(b) for all a ∈ A and b ∈ B. If πA and πB are faithful, then
πA � πB is faithful as well.



10 CHAPTER 1. TENSOR PRODUCTS OF INVOLUTIVE ALGEBRAS

Proof. Combine Proposition 1.16, Corollary 1.21 and Proposition 1.13.

In the above case, we have that the image πA � πB(A� B) is a ∗-subalgebra of B(H⊗K), consisting
of �nite sums of elementary tensors

∑n
i=1 πA(ai)⊗ πB(bi). If A and B are ∗-subalgebras of B(H) and

B(K) respectively, we are then able to consider A�B as a subset of B(H⊗K) by means of the above
corollary used on the inclusion maps.

And hence ends our pursuit of elementary results for ∗-algebra tensor products. Nothing particularly
surprising of course, but that is precisely what we need: nothing too fancy so far. But fancy it will be.

1.2 Matrix algebras

Any algebraist will likely hit upon a place where he or she will need to construct new algebraic structures
from already given ones. It is a song no mathematician ever stops singing, and the preceding section was
just another verse in that song: new ∗-algebra structures were created from given pairs of ∗-algebras.
This section will manage to create a ton of new C∗-algebras � not just ∗-algebras � from a given one.
The small setback is that it turns out later that we have already seen them before � they are in fact
algebraic tensor products � but since the original new class of ∗-algebras have norms, these algebraic
tensor product acquire norms as well, so time is not exactly wasted. Let us get started right away.

Let A be a C∗-algebra and let n ≥ 1 be an integer. We construct the matrix algebra Mn(A), a new
C∗-algebra derived from A, as follows. First, let Mn(A) be the set of all matrices (xij)

n
i,j=1 where

each entry xij belongs to A. Addition and scalar multiplication in Mn(A) are then given by the usual
pointwise operations, and the product is given by the standard way of multiplying matrices, i.e.

x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

...
xn1 xn2 · · · xnn



y11 y12 · · · y1n

y21 y22 · · · y2n

...
...

...
yn1 yn2 · · · ynn

 =


z11 z12 · · · z1n

z21 z22 · · · z2n

...
...

...
zn1 zn2 · · · znn


where

zij =

n∑
k=1

xikykj , i, j = 1, 2, . . . , n.

It is straightforward to check that Mn(A) becomes an algebra with these operations. An involution is
then de�ned by 

x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

...
xn1 xn2 · · · xnn


∗

=


x∗11 x∗21 · · · x∗n1

x∗12 x∗22 · · · x∗n2
...

...
...

x∗1n x∗2n · · · x∗nn

 ,

and one can check that the involution axioms indeed hold, so that Mn(A) becomes a ∗-algebra. We
now only need a C∗-algebra norm on Mn(A) to yield a proper new C∗-algebra, and the question is:
from where do we get such a norm (a good one would be preferable)?

The answer is that we can use the fact that any C∗-algebra has a faithful representation on a Hilbert
space (see page viii). Let π : A → B(H) be one such on a Hilbert space H. We now de�ne a map
π̂ : Mn(A)→ B(Hn) by

π̂


x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

...
xn1 xn2 · · · xnn



ξ1
ξ2
...
ξn

 =


π(x11)ξ1 + π(x12)ξ2 + · · ·+ π(x1n)ξn
π(x21)ξ1 + π(x22)ξ2 + · · ·+ π(x2n)ξn

...
π(xn1)ξ1 + π(xn2)ξ2 + · · ·+ π(xnn)ξn

 .

This actually gives us a norm, provided we prove the following proposition �rst.

Proposition 1.23. π̂ is a faithful representation of Mn(A) on Hn.



1.2. MATRIX ALGEBRAS 11

Proof. It is clear that π̂ is linear. Furthermore, it is well-de�ned since for x = (xij)
n
i,j=1 ∈Mn(A) and

ξ = (ξ1, . . . , ξn) ∈ Hn, we have

‖π̂(x)ξ‖2 =

n∑
i=1

∥∥∥∥∥∥
n∑
j=1

π(xij)ξj

∥∥∥∥∥∥
2

≤
n∑
i=1

 n∑
j=1

‖π(xij)ξj‖

2

≤ m2
n∑

i,j=1

‖ξj‖2 = nm2‖ξ‖2,

where m = maxi,j ‖xij‖. Multiplicativity follows from letting x = (xij)
n
i,j=1, y = (yij)

n
i,j=1 ∈ Mn(A),

de�ning the matrix z = xy = (zij)
n
i,j=1 and noting that

π̂(x)π̂(y)


ξ1
ξ2
...
ξn

 = π̂(x)


∑n
j=1 π(y1j)ξj∑n
j=1 π(y2j)ξj

...∑n
j=1 π(ynj)ξj

 =


∑n
k=1 π(x1k)[

∑n
j=1 π(ykj)ξj ]∑n

k=1 π(x2k)[
∑n
j=1 π(ykj)ξj ]

...∑n
k=1 π(xnk)[

∑n
j=1 π(ykj)ξj ]



=


∑n
j=1

∑n
k=1 π(x1kykj)ξj∑n

j=1

∑n
k=1 π(x2kykj)ξj

...∑n
j=1

∑n
k=1 π(xnkykj)ξj

 =


∑n
j=1 π(

∑n
k=1 x1kykj)ξj∑n

j=1 π(
∑n
k=1 x2kykj)ξj
...∑n

j=1 π(
∑n
k=1 xnkykj)ξj



=


∑n
j=1 π(z1j)ξj∑n
j=1 π(z2j)ξj

...∑n
j=1 π(znj)ξj

 = π̂(z)


ξ1
ξ2
...
ξn

 .

Note also that for ξ = (ξ1, . . . , ξn) and (η1, . . . , ηn) in Hn, we have

〈π̂(x∗)ξ, η〉 =

n∑
j=1

〈
n∑
k=1

π(x∗kj)ξk, ηj

〉
=

n∑
j=1

n∑
k=1

〈π(xkj)
∗ξk, ηj〉 =

n∑
k=1

〈
ξk,

n∑
j=1

π(xkj)ηj

〉
= 〈ξ, π̂(x)η〉,

so π̂ preserves adjoints (note here that we explicitly use how the adjoints of Mn(A) are de�ned).
Finally, π̂ is injective. Assume that π̂(x) = 0 for some x = (xij) ∈ Mn(A), and let ξ0 ∈ H. Because
π̂(x)(ξ0, 0, . . . , 0) = 0 we then obtain π(x11)ξ0 = · · · = π(xn1)ξ0, and since ξ0 was arbitrary, we must
have π(x11) = · · · = π(xn1) = 0 whence x11 = · · · = xn1 = 0 since π is faithful. That the other
columns of x consist only of zero vectors is proved in the exact same way.

It follows that we can de�ne an algebra norm on Mn(A) by ‖x‖ := ‖π̂(x)‖ for all x ∈ Mn(A). That
‖x‖ = 0 implies x = 0 follows from π̂ being injective, and additionally

‖x∗x‖ = ‖π̂(x)∗π̂(x)‖ = ‖π̂(x)‖2 = ‖x‖2,

so that the C∗-axiom is also satis�ed. However, we are not entirely done; it still remains to show that
Mn(A) is complete under this norm.

Lemma 1.24. Let H be a Hilbert space and T ∈ B(H). Then

‖T‖ = sup{|〈Tξ, η〉| | ξ, η ∈ (H)1} = sup{|〈Tξ, η〉| | ξ, η ∈ H, ‖ξ‖ = ‖η‖ = 1}.

Proof. Let m1 and m2 denote the supremums in the order above; note that m2 ≤ m1. If T = 0, the
equations clearly hold, so assume that T 6= 0. Note �rst that |〈Tξ, η〉| ≤ ‖T‖‖ξ‖‖η‖ = ‖T‖ for all
ξ, η ∈ (H)1, so m1 ≤ ‖T‖. For 0 < ε < ‖T‖ choose ξ ∈ H with ‖ξ‖ = 1 such that ‖Tξ‖ + ε ≥ ‖T‖.
Then Tξ 6= 0, so by letting η = ‖Tξ‖−1Tξ, we obtain |〈Tξ, η〉|+ε ≥ ‖T‖. Hence ‖T‖ ≤ m2, completing
the proof.

Lemma 1.25. For all x = (xij)
n
i,j=1 ∈Mn(A), it holds that

max
i,j=1,...,n

‖xij‖ ≤ ‖x‖ ≤
n∑

i,j=1

‖xij‖.
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Proof. Let α be the above maximum. Then α = ‖xij‖ = ‖π(xij)‖ for some i, j, so Lemma 1.24 yields
vectors ξ, η ∈ (H)1 such that α − ε ≤ |〈π(xij)ξ, η〉|. If we let v = (0, . . . , 0, ξ, 0, . . . , 0) ∈ Hn with ξ at
the j'th place and w ∈ Hn likewise with η at the i'th place, we �rst and foremost obtain

π̂(x)v =


π(x1j)ξ
π(x2j)ξ

...
π(xnj)ξ

 ,

and hence α − ε ≤ |〈π(xij)ξ, η〉| = |〈π̂(x)v, w〉| ≤ ‖π̂(x)‖. Since ε > 0 was arbitrary, we obtain
‖π̂(x)‖ ≥ α, proving the �rst inequality.

For the second inequality, we remark that for ξ = (ξ1, . . . , ξn), η = (η1, . . . , ηn) ∈ (Hn)1 we have
‖ξi‖ ≤ ‖ξ‖ as well as ‖ηi‖ ≤ ‖η‖ for all i, and hence

|〈π(x)ξ, η〉| =

∣∣∣∣∣∣
n∑

i,j=1

〈π(xij)ξj , ηi〉

∣∣∣∣∣∣ ≤
n∑

i,j=1

|〈π(xij)ξj , ηi〉| ≤
n∑

i,j=1

‖π(xij)‖ ≤
n∑

i,j=1

‖xij‖

since π is a ∗-homomorphism, so Lemma 1.24 completes the proof.

Proposition 1.26. Mn(A) is complete under ‖ · ‖ and hence becomes a C∗-algebra under this norm.

Proof. Let (xλ)λ≥1 be a Cauchy sequence of matrices in Mn(A). For any i, j = 1, . . . , n, Lemma 1.25
yields

‖xλij − x
µ
ij‖ ≤ max

i,j=1,...,n
‖xλij − x

µ
ij‖ ≤ ‖x

λ − xµ‖

for all λ, µ ≥ 1, so (xλij) is a Cauchy sequence and hence converges to some xij ∈ A for λ → ∞ since
A is a Banach space. Let x be the matrix (xij)

n
i,j=1 ∈Mn(A); then Lemma 1.25 tells us that

‖xλ − x‖ ≤
n∑

i,j=1

‖xλij − xij‖ → 0

for λ→∞, so (xλ) converges and therefore (Mn(A), ‖ · ‖) is a Banach space, hence a C∗-algebra.

Before commenting on what we have found, we prove one small lemma �rst.

Lemma 1.27. Let (B, ‖ · ‖1) be a C∗-algebra and let ‖ · ‖2 be another C∗-algebra norm on B. Then
‖ · ‖1 = ‖ · ‖2.

Proof. De�ne B′ = (B, ‖ · ‖1). Then the map π : B → B′ given by π(x) = x is an injective ∗-homomor-
phism and hence an isometry, yielding the result.

Hence the C∗-algebra norm is independent of which representation on some Hilbert space we choose
� since the norms derived from any two representations make Mn(A) into a C∗-algebra, they must be
equal. This is great news, but there is more: By identifying the elements of Mn(C) with the bounded
linear operators on Cn, we obtain a C∗-algebra structure on Mn(C). The canonical basis for Mn(C) is
the set of matrix units (eij)

n
i,j=1 where eij is the matrix with 1 at position (i, j) and 0 everywhere else.

Corollary 1.12 now gives us for any C∗-algebra A that any element v ∈ A �Mn(C) can be written
uniquely in the form

v =

n∑
i,j=1

aij ⊗ eij , aij ∈ A, i, j = 1, . . . , n.

De�ning a map ϕ : A�Mn(C)→Mn(A) by

ϕ

 n∑
i,j=1

aij ⊗ eij

 = (aij)
n
i,j=1,

it becomes evident that ϕ is a ∗-isomorphism of ∗-algebras. Indeed, it follows from the unique represen�
tation of tensors that the map is a bijection, it is clearly linear, and by using the matrix unit equality
eijekl = δjkeil (δjk denoting the Kronecker delta, i.e. δjk = 1 if j = k and δjk = 0 if j 6= k) and how
we de�ned the products and involutions in the separate ∗-algebras, one can easily show that it is also
multiplicative and ∗-preserving.
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Corollary 1.28. For any C∗-algebra A, there exists a unique C∗-algebra norm on the algebraic tensor
product A�Mn(C). A�Mn(C) equipped with the norm is denoted by A⊗Mn(C).

Proof. The ∗-isomorphism A�Mn(C) ∼= Mn(A) induces a C∗-algebra norm on A�Mn(C), and Lemma
1.27 yields uniqueness of this norm.

Having completed the construction of the matrix algebra, it must be remembered that when one works
with matrices containing complex numbers, one does not usually work with only quadratic ones. In
the same manner, it is possible for us to de�ne some useful �shrinkings� of general matrix C∗-algebras.

De�nition 1.2. Let n ≥ 1. Then we de�ne three closed subspaces of Mn(A) by

(i) Mn,1(A) = {(aij)ni,j=1 | aij = 0 for all (i, j) with i ≥ 1, j ≥ 2};
(ii) M1,n(A) = {(aij)ni,j=1 | aij = 0 for all (i, j) with i ≥ 2, j ≥ 1};
(iii) M1,1(A) = {(aij)ni,j=1 | aij = 0 for all (i, j) 6= (1, 1)}.

Hence x ∈Mn,1(A) and y ∈M1,n(A) are of the form

x =


a1 0 · · · 0
a2 0 · · · 0
...

...
...

an 0 · · · 0

 , y =


b1 b2 · · · bn
0 0 · · · 0
...

...
...

0 0 · · · 0


for a1, b1, . . . , an, bn ∈ A. We will specify elements of M1,n(A) and Mn,1(A) by simply writing the n
elements of A that make up the column or row in the obvious ordering, i.e. x ∈Mn,1(A) is written

x = (a1, . . . , an).

It is easy to see that

M1,n(A)Mn(A) ⊆M1,n(A), Mn(A)Mn,1(A) ⊆Mn,1(A), M1,n(A)Mn,1(A) ⊆M1,1(A),

as well as Mn,1(A)∗ = M1,n(A) and M1,n(A)∗ = Mn,1(A). Finally, note that M1,1(A) is a C∗-subal-
gebra of Mn(A) that is ∗-isomorphic to A; this allows us to write M1,1(A) = A.

So far, we have found a way of inducing a norm on the ∗-algebra tensor product A�Mn(C). We are
not entirely ready for the general case, as we would perhaps like to know a bit more about special
cases of matrix algebras. As the construction made use of a connection to Hilbert spaces, one might
ask what would happen if the C∗-algebra was a subset of B(H) for some H � or better yet, a von
Neumann algebra? The next section clears that up, along with a whole lot of other things...

1.3 Tensor products of von Neumann algebras

As von Neumann algebras require some topological concerns, then if one would take tensor products
of two von Neumann algebras, one would not come a very long way. Of course Corollary 1.22 will
embed their algebraic tensor product in the bounded linear operators in a Hilbert space, and taking
the double commutant of the resulting ∗-algebra will get us a long way. To prove things about this
double commutant, which we will give a name in a short while, one will not come very far if the only
thing known about it is that it is a von Neumann algebra. The �rst couple of pages of this section
may therefore seem irrelevant, but they give us the information we need to actually prove some, and I
cannot stress this enough, very nice properties of this new von Neumann algebra.

We start out slow but don't worry, everything will soon be really complicated.

Proposition 1.29. Let H and K be Hilbert spaces and let U : H → K be an isometric isomorphism.
If S is any subset of B(H), then

(USU−1)′ = US ′U−1.

In particular, if M ⊆ B(H) is a von Neumann algebra, then N = UMU−1 ⊆ B(K) is a von Neumann
algebra, and the map M → N given by T 7→ UTU−1 is a ∗-isomorphism between these von Neumann
algebras.
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Proof. For all T ∈ B(K) we have

T ∈ (USU−1)′ ⇔ TUSU−1 = USU−1T for all S ∈ S

⇔ U−1TUS = SU−1TU for all S ∈ S

⇔ U−1TU ∈ S ′

⇔ T ∈ US ′U−1.

The second part easily follows.

De�nition 1.3. If U : H → K is an isometric isomorphism, then a ∗-isomorphism of von Neumann
algebras induced by U as in Proposition 1.29 is called a spatial isomorphism.

In the following, let H and K be Hilbert spaces. Let (ei)i∈I and (fj)j∈J be orthonormal bases for H
and K respectively, and de�ne a map Uj : H → H⊗K by Uj(ξ) = ξ ⊗ fj for j ∈ J . Uj is then a linear
isometry and if j 6= k, Uj and Uk have orthogonal ranges. De�ning a map U : HJ → H⊗K by

U((ξj)j∈J) =
∑
j∈J

Uj(ξj) =
∑
j∈J

ξj ⊗ fj ,

we see that U is a well-de�ned linear isometry. This particular map is very important for our under�
standing of the concepts coming up, so keep the following in mind:

We will keep U and all Uj de�ned in the same way above for Hilbert spaces H and K (the latter with
an orthonormal basis indexed by a set J) for the remainder of this section.

Proposition 1.30. Let (ei)i∈I and (fj)j∈J be orthonormal bases for H and K respectively. Then the
set {ei ⊗ fj | i ∈ I, j ∈ J} is an orthonormal basis for H⊗K.

Proof. It is clear that the set is orthonormal. Let v ∈ H � K. Then w =
∑m
n=1 ξn ⊗ ηn for vectors

ξ1, . . . , ξm ∈ H and η1, . . . , ηm ∈ K. We then have ξn =
∑
i∈I λ

n
i ei and ηn =

∑
j∈J µ

n
j fj for all

n = 1, . . . ,m where (λni )i∈I and (µnj )j∈J are square-summable sequences. For �nite subsets F ⊆ I and
G ⊆ J∥∥∥∥∥∥ξn ⊗ ηn −

(∑
i∈F

λni ei

)
⊗

∑
j∈G

µnj fj

∥∥∥∥∥∥ ≤ ‖ξn‖
∥∥∥∥∥∥ηn −

∑
j∈G

µnj fj

∥∥∥∥∥∥+

∥∥∥∥∥ξn −∑
i∈F

λni ei

∥∥∥∥∥
∑
j∈J
|µnj |2

1/2

,

which can be made arbitrarily small by choosing F and G appropriately. Hence ξn⊗ηn and therefore w
is contained in the closure of the linear span of the {ei⊗ fj | i ∈ I, j ∈ J}. Thus H�K is contained in
this span, so H⊗K is contained in the span as well, so {ei⊗ fj | i ∈ I, j ∈ J} must be an orthonormal
basis of H⊗K.

Note that the image of U contains this basis; we will now show that U is in fact surjective. Take
w ∈ H ⊗K and take a family (λij)(i,j)∈I×J of complex numbers such that∑

(i,j)∈I×J

|λij |2 <∞, w =
∑

(i,j)∈I×J

λij(ej ⊗ fj).

For all �nite subsets F ⊆ I and G ⊆ J , let wF,G =
∑

(i,j)∈F×G λij(ej ⊗ fj) and de�ne

ξF,G =
∑
j∈G

∑
i∈F

ιj(λijej),

where ιj is the inclusion of the j'th replica of H into HJ . Then U(ξF,G) = wF,G. Letting FI and
FJ denote the set of �nite subsets of I and J respectively, we make FI × FJ into a directed set by
coordinatewise inclusion. Let ε > 0 and take a �nite subset A ⊆ I × J such that∑

(i,j)/∈A

|λij |2 <
ε2

4
.
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We can now take a �nite subset F0 ⊆ I and G0 ⊆ J such that A ⊆ F0×G0. For all (F,G) ≥ (F0, G0),
we now have

‖ξF,G − ξF0,G0
‖2 =

∥∥∥∥∥∥
∑

j∈G\G0

ιj

 ∑
i∈F\F0

λijej

∥∥∥∥∥∥
2

=
∑

(i,j)∈(F×G)\(F0×G0)

|λij |2 ≤
∑

(i,j)∈A

|λij |2 <
ε2

4
.

Hence for all (F1, G1) and (F2, G2) larger than (F0, G0), we have ‖ξF1,G1
− ξF2,G2

‖ < ε, so (ξF,G) is a
Cauchy net and therefore converges to some ξ ∈ HJ by [11, Proposition 1.7]; since ‖wF,G − U(ξ)‖ is
equal to ‖ξF,G − ξ‖, it follows that U(ξ) = w. Therefore U is onto.

In short, we have now proved the following statement:

Proposition 1.31. If (fj)j∈J is an orthonormal basis for K, then any w ∈ H ⊗ K can be uniquely
represented in the form

w =
∑
j∈J

ξj ⊗ fj ,

where (ξj)j∈J is a family of elements in H satisfying
∑
j∈J ‖ξj‖2 <∞.

If Ui is de�ned as above, we then have

U∗i

∑
j∈J

hj ⊗ fj

 = hi

for i ∈ J , so
U =

∑
j∈J

Ujπj , U−1 =
∑
j∈J

ιjU
∗
j ,

where ιj is as before, πj is the projection fromHJ to the j'th copy and the series are strongly convergent.
Note that U∗i Ui = 1H for all i ∈ J and that U∗j Ui = 0 for all i, j ∈ J with i 6= j. For T ∈ B(H⊗K),
then by de�ning bounded operators Tij = U∗j TUi : H → H for i, j ∈ J we have

U−1TU =
∑
j∈J

∑
i∈J

ιjTijπi.

Formulated di�erently, T de�nes a matrix of operators in B(H).

Suppose now that an operator T ∈ B(H ⊗ K) is of the form T1 ⊗ 1K and let i, j ∈ J . Considering
U∗j TUi : H → H for i, j ∈ J , we �nd that U∗j TUi = T1 for i = j and U∗j TUi = 0 if i 6= j. If we now
consider UiU∗j : H⊗K → H⊗K, UiU∗j is a bounded linear operator and for ξ =

∑
j∈J ξj ⊗ fj , we have

UiU
∗
j Tξ = UiT1ξj = T1ξj ⊗ fi, TUiU

∗
j ξ = TUiξj = T1ξj ⊗ fi.

Hence all operators in B(H ⊗ K) of the form T1 ⊗ 1K commute with all operators of the form UiU
∗
j .

Conversely, suppose that T ∈ B(H⊗K) commutes with all UiU∗j for all i, j ∈ J . Then for all i, j ∈ J
with i 6= j, we have UiU∗j TUj = TUiU

∗
j Uj = TUi, so U∗i TUi = U∗i UiU

∗
j TUj = U∗j TUj . Moreover,

U∗j TUi = U∗j TUi(U
∗
i Ui) = (U∗j Ui)U

∗
i TUi = 0 since U∗j Ui = 0. De�ne T1 = U∗j TUj for some j ∈ J .

Then for any ξ = (ξj)j∈J ∈ HJ , we have

U−1TUξ =
∑
j∈J

ιjT1πjξ = (T1ξj)j∈J = U−1

∑
j∈J

T1ξj ⊗ fj

 = U−1(T1 ⊗ 1K)Uξ.

Hence T = T1 ⊗ 1K, so we conclude

{UiU∗j | i, j ∈ J}′ = B(H)⊗ C1K.

It is now time to de�ne the tensor product in the case of von Neumann algebras.
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De�nition 1.4. If M ⊆ B(H) and N ⊆ B(K) are ∗-algebras, then the von Neumann algebra tensor
product M ⊗N of M and N is the von Neumann algebra generated by all operators of the form
S ⊗ T ∈ B(H⊗K) for S ∈M and T ∈ N . In other words,

M ⊗N = {S ⊗ T |S ∈M , T ∈ N }′′.

Assuming additionally that M and N are unital, then if we denote the set of �nite linear combinations
of operators S⊗T ∈ B(H⊗K) for S ∈M and T ∈ N by M �N , then M ⊗N is in fact the strong
operator closure of M �N by von Neumann's bicommutant theorem (Theorem 0.9).

Proposition 1.32. De�ne π : B(H) → B(H ⊗ K) by π(T ) = T ⊗ 1K. If S ⊆ B(H) is any subset,
then π(S ′′) = π(S )′′, so π maps von Neumann algebras to von Neumann algebras.

Proof. For all i, j ∈ J then UiU∗j (S ⊗ 1K) = (S ⊗ 1K)UiU
∗
j for all S ∈ S , so UiU∗j ∈ π(S )′. Hence

π(S )′′ ⊆ π(B(H)) by what we found above. Since π is an isomorphism of B(H) onto π(B(H)), then
for S ∈ π(S )′′ there exists S1 ∈ B(H) such that π(S1) = S. For T ∈ S ′ and π(R) ∈ π(S ), we have
π(T )π(R) = π(R)π(T ), so π(T ) ∈ π(S )′. Therefore

π(S1T ) = Sπ(T ) = π(T )S = π(TS1),

so S1T = TS1, and hence S1 ∈ S ′′. On the other hand, if T ∈ S ′′, then for all S ∈ π(S )′, we have
π(T )S = Sπ(T ), so π(S ′′) ⊆ π(S )′′.

The above proposition then says that for any von Neumann algebra M ⊆ B(H),

M ⊗C1K = π(M )′′ = π(M ) = M ⊗ C1K.

Hence M⊗C1K is a von Neumann algebra acting onH⊗K; π is in the above case called an ampli�cation
of M . For a ∗-subalgebra M ⊆ B(H) and a nonempty set J , de�ne the following subsets of B(HJ) as
follows:

q M J =
⊕

j∈J M .

q ∆J(M ) = {T = (Tj)j∈J ∈M J | there exists an S ∈M such that Tj = S for all j ∈ J}.

q MJ(M ) = {T ∈ B(HJ) |πiTιj ∈M for all i, j ∈ J}.

We clearly have the inclusion
∆J(M ) ⊆M J ⊆MJ(M ).

In the case where J is �nite, we might want to exchange J in the symbolisms above for the cardinality
of J . However, this creates a glaring problem: if M is a C∗-algebra, is Mn(M ) in the above sense
di�erent from Mn(M ) in the matrix algebra sense in the previous section? We will get this problem
out of the way immediately, in a manner that allows for great �exibility later on. Let n ≥ 1, let A
be the matrix algebra Mn(M ) and let B ⊆ B(Hn) be Mn(M ) as de�ned as above. The inclusion
M → B(H) allows for a representation π : A → B(Hn) given by

π


T11 T12 · · · T1n

T21 T22 · · · T2n

...
...

...
Tn1 Tn2 · · · Tnn



ξ1
ξ2
...
ξn

 =


T11ξ1 + T12ξ2 + · · ·+ T1nξn
T21ξ1 + T22ξ2 + · · ·+ T2nξn

...
Tn1ξ1 + Tn2ξ2 + · · ·+ Tnnξn

 ,

proven to be a faithful representation in Proposition 1.23. If T = (Tij)
n
i,j=1 ∈ A then we have

πiπ(T )ιj(ξ) = πi


T1jξ
T2jξ
...

Tnjξ

 = Tijξ

for all i, j = 1, . . . , n, so that πiπ(T )ιj = Tij ∈M , hence proving that π(A) ⊆ B. On the other hand,
if T ∈ B then by putting Tij = πiTιj for i, j = 1, . . . , n, we have for all ξ = (ξ1, . . . , ξn) ∈ Hn that
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π̂


T11 T12 · · · T1n

T21 T22 · · · T2n

...
...

...
Tn1 Tn2 · · · Tnn

 ξ =


π1(Tι1ξ1 + · · ·+ Tιnξn)
π2(Tι1ξ1 + · · ·+ Tιnξn)

...
πn(Tι1ξ1 + · · ·+ Tιnξn)

 =


π1(Tξ)
π2(Tξ)

...
πn(Tξ)

 = Tξ,

yielding π((Tij)
n
i,j=1) = T whence π is surjective. Since π induces the norm on A, π is isometric as

well, so A and B are isometrically ∗-isomorphic as normed ∗-algebras. This enables us to identify the
matrix algebra Mn(M ) of M ⊆ B(H) with a ∗-subalgebra of B(Hn), and moreover, as πiTιj ∈ B(H)
for all T ∈ B(Hn), it follows that

Mn(B(H)) ∼= B(Hn).

Hence our problem is out of the way by means of a natural ∗-isomorphism. We will return to this
matter at the end of this section.

We now continue from where we left o�. For the sake of notation, then for any T ∈M we de�ne the
operator ∆(T ) ∈ ∆J(M ) by ∆(T ) = (Tj)j∈J where Tj = T for all j ∈ J .

Proposition 1.33. Let M be a ∗-subalgebra of B(H) and K a Hilbert space with orthonormal basis
indexed by a set J . With U de�ned as above, the following statements hold:

(i) ∆J(M ) = U−1(M ⊗ C1K)U .
(ii) If M is a von Neumann algebra, then MJ(M )′ = ∆J(M ′) and MJ(M ′) = ∆J(M )′, implying

that MJ(M ) and ∆J(M ) are von Neumann algebras.
(iii) For any subset S ⊆ B(HJ), we have (USU−1)′ = US ′U−1. If M is a von Neumann algebra,

then UMJ(M )U−1 is a von Neumann algebra acting on H⊗K.

Proof. (i) For T ∈M , we have

U−1(T ⊗ 1K)U(ξj)j∈J = (Tξj)j∈J = ∆(T )(ξj)j∈J .

(ii) For all T ∈M ′ and S ∈MJ(M ), note that for any ξ = (ξj)j∈J we have

πi(S∆(T )ξ) =
∑
j∈J

πiSιj(Tξj) =
∑
j∈J

TπiSιjξj = TπiSξ

for all i ∈ J , so

S∆(T )ξ =
∑
i∈J

ιi(πi(S∆(T )ξ)) =
∑
i∈J

ιi(TπiSξ) = (TπiSξ)i∈J = ∆(T )Sξ.

Hence ∆J(M ′) ⊆ MJ(M )′. Assuming instead that T ∈M and S ∈ MJ(M ′), we see that the above
equations are still true, so we also have ∆J(M )′ ⊆MJ(M ′). Note that these inclusions do not require
M to be a von Neumann algebra, but at most just a ∗-subalgebra. This also implies that for all
∗-subalgebras M of B(H), we have

∆J(M ′′) ⊆MJ(M ′)′ ⊆ ∆J(M )′′. (1.2)

Assume that S ∈ MJ(M )′. Then S ∈ (M J)′ = (M ′)
J by Corollary 0.11, so S = (Sj)j∈J where

Sj ∈ M ′ for all j ∈ J . De�ne Eij = ιiπj for i, j ∈ J . Then πiEijιj = 0 if i, j ∈ J and i 6= j and
πiEiiιi = 1H for i ∈ I, so Eij ∈MJ(M ). Hence S commutes with all Eij . For i, j ∈ J with i 6= j, we
only need to prove that Si = Sj in order to prove the �rst statement, but as

Siξ = πiSιiξ = πiSιi(πjιj)ξ = πiSEijιjξ = πiEijSιjξ = πi(ιiπj)Sιjξ = πjSιjξ = Sjξ

for ξ ∈ H we hence obtain Si = Sj and thus S ∈ ∆J(M ′). Finally, for S ∈ ∆J(M )′, then for all
T ∈M , i, j ∈ J and ξ ∈ H we have πi∆(T ) = Tπi and hence

πiSιjTξ = πiS∆(T )ιjξ = πi∆(T )Sιjξ = TπiSιjξ,

so πiSιj ∈M ′ for all i, j ∈ J , and hence S ∈MJ(M ′). As we now obtain

MJ(M )′′ = ∆J(M ′)′ = MJ(M ), ∆J(M )′′ = MJ(M ′)′ = ∆J(M ),
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we see that MJ(M ) and ∆J(M ) are von Neumann algebras.

(iii) The �rst part follows from Proposition 1.29, and therefore

(UMJ(M )U−1)′′ = UMJ(M )U−1

by (ii), since M is a von Neumann algebra. Therefore UMJ(M )U−1 is a von Neumann algebra acting
on H⊗K.

Lemma 1.34. Let M be a von Neumann algebra of B(H) and K a Hilbert space with orthonormal
basis indexed by a set J . With U de�ned as above, then U−1(M ⊗B(K))U = MJ(M ). If J is �nite,
then M ⊗B(K) = M �B(K).

Proof. For all S ∈M , we have U−1(S⊗1K)U ∈ ∆J(M ) by Proposition 1.33. By de�ning uij : K → K
by uijξ = 〈ξ, fj〉fi, then for all T ∈ B(K) we have

T =
∑
i∈J

∑
j∈J
〈Tfi, fj〉uij

where the series in the above expression are strong operator convergent. As U−1(1H ⊗ uij)U = ιiπj
and ιiπj ∈ ((M ′)J)′ = M J for all i, j ∈ J by Corollary 0.11, then because M J is strongly closed
and the map S 7→ U−1SU for S ∈ B(H ⊗ K) is strongly-to-strongly continuous, it follows that
U−1(1H ⊗ T )U ∈M J for all T ∈ B(K). Hence U−1(S ⊗ T )U ∈M J for all S ∈M and T ∈ B(K), so

U−1(M ⊗B(K))U ⊆M J ⊆MJ(M )

by the preceding paragraph, as M ⊗B(K) is the smallest von Neumann algebra containing all operators
S ⊗ T and UM JU−1 is a von Neumann algebra by Proposition 1.33.

If T = (Tj)j∈J ∈ MJ(M ) and let Tij = πiTιj ∈ M for all i, j ∈ I. For a �nite subset F ⊆ J , let
EF =

∑
i∈F ιiπi. As

U−1

∑
i,j∈F

(Tij ⊗ uij)

U(ξk)k∈J =
∑
i,j∈F

U−1

(∑
k∈J

Tijξk ⊗ uij(fk)

)

=
∑
i,j∈F

U−1 (Tijξj ⊗ fi)

=
∑
i,j∈F

ιi(Tijξj)

= EFTEF (ξk)k∈J .

Hence UEFTEFU−1 ∈ M ⊗B(K). Because EF converges strongly to the identity operator of HJ ,
then EFTEF → T strongly, and since S 7→ USU−1 is strongly-to-strongly continuous, we �nd that
UEFTEFU

−1 → UTU−1 strongly, and hence T ∈ U−1(M ⊗B(K))U , as M ⊗B(K) is strongly closed.
Hence U−1(M ⊗B(K))U = MJ(M ).

In the case where J is �nite, then EJ is the identity operator, so

T = U−1

∑
i,j∈F

(Tij ⊗ uij)

U ∈ U−1(M �B(K))U

with T , Tij and uij as above. Hence M ⊗B(K) = UMJ(M )U−1 ⊆ M � B(K), yielding the second
statement.

Proposition 1.35. For any Hilbert spaces H and K and any von Neumann algebra M ⊆ B(H), we
have

(i) (M ⊗ C1K)′ = M ′⊗B(K).
(ii) (M ⊗B(K))′ = M ′ ⊗ C1K.
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(iii) B(H)⊗B(K) = B(H⊗K).

Proof. Assuming that K has an orthonormal basis indexed by J , then if U is de�ned as above, we have

M ′ ⊗ C1K = U∆J(M ′)U−1 = UMJ(M )′U−1 = (UMJ(M )U−1)′ = (M ⊗B(K))′

from Proposition 1.33 and Lemma 1.34. Hence we have (ii), from which (i) follows immediately. For
(iii), note that Lemma 1.34 yields

U−1(B(H)⊗B(K))U = MJ(B(H)) = B(HJ),

so B(H)⊗B(K) = B(H⊗K).

Up until now, we have been working with two Hilbert spaces H and K and focusing exclusively on the
algebraic properties of the tensor product of von Neumann algebras in B(H) and �trivial� subalgebras of
B(K). This is not because the results turn false once we shift our focal points and work with non-trivial
von Neumann algebras in B(K); the entire section can essentially be �proved again� for these, but we
will not do this, for the simple reason that it would be very tedious and completely useless (a stronger
variant of useless). What would the use be, indeed: we have nowhere assumed that our von Neumann
algebras and Hilbert spaces have had magical properties. Su�ce to say that the reader can probably
accept the claim that similar properties hold in the other case.

Our last result will concern what happens with strong operator closures of ∗-subalgebras M of B(H)
when passing to matrix algebras. The statement is quite elementary, so we will skip right ahead to the
proof.

Proposition 1.36. Let M be a ∗-subalgebra of B(H) with strong (or weak) operator closure N such
that N is a von Neumann algebra. Then Mn(N ) ⊆ B(Hn) is the strong (or weak) operator closure
of Mn(M ).

Proof. Since the strong operator closures and weak operator closures of convex sets are equal, it su�ces
to show the result for the strong operator case. Let T ∈M2(N ). Then

T =

T11 · · · T1n

...
. . .

...
Tn1 · · · Tnn

 ,

where Tij ∈ N for all i, j = 1, . . . , n. For all i, j = 1, . . . , n, there exist nets (Tαij)α∈Aij of M such that
Tαij → T strongly. Make

A =

n∏
i,j=1

Aij

into a directed set by de�ning (αij)
n
i,j=1 ≤ (α′ij)

n
i,j=1 if αij ≤ α′ij for all i, j = 1, . . . , n. We thus obtain

a net of matrices 
T

α11
11 · · · Tα1n

1n
...

. . .
...

Tαn1
n1 · · · Tαnnnn




(αij)ni,j=1∈A

in Mn(M ). Let (ξ1, . . . , ξn) ∈ Hn and ε > 0, and pick (α′ij)
n
i,j=1 ∈ A such that

‖Tαijij ξj − Tijξj‖ <
ε

n2

for (αij)
n
i,j=1 ≥ (α′ij)

n
i,j=1. Then∥∥∥∥∥∥∥

T
α11
11 · · · Tα1n

1n
...

. . .
...

Tαn1
n1 · · · Tαnnnn


ξ1...
ξn

− T
ξ1...
ξn


∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥
 (Tα11

11 − T11)ξ1 + . . .+ (Tα1n
1n − T1n)ξn

...
(Tαn1
n1 − Tn1)ξ1 + . . .+ (Tαnnnn − Tnn)ξn


∥∥∥∥∥∥∥

≤

√√√√ n∑
i,j=1

‖(Tαijij − Tij)ξj‖2

≤
n∑

i,j=1

‖(Tαijij − Tij)ξj‖ < ε.
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Hence the net converges to T strongly, proving thatM2(N ) is contained in the strong operator closure
of M2(M ). Conversely, if T of the above form is contained in the strong operator closure of Mn(M ),
then there exists a net of matrices

Tα =


T

α
11 · · · Tα1n
...

. . .
...

Tαn1 · · · Tαnn



α∈A

with all entries in M , such that Tα converges to T strongly. For ξ ∈ H and any i, j = 1, . . . , n, note
that

‖(Tαij − Tij)ξ‖2 ≤
n∑
i=1

‖(Tαij − Tij)ξ‖2 = ‖(Tα − T )ιi(ξ)‖2 → 0,

where ιi denotes the inclusion of H into the i'th copy in Hn. Hence Tαij → Tij strongly for all i, j, so
T ∈Mn(N ).

1.4 Tensor products of C∗-algebras and algebraic states

Having quite thoroughly dealt with matrix algebras and tensor products of von Neumann algebras in
the previous two sections, we now proceed to the general case of C∗-algebras. In this case, one could
just de�ne norms on algebraic tensor products making the completions into C∗-algebras, but we will
go slower and take a more subtle and cumulative approach, revealing how these norms actually arise
in the process.

We will �rst look into norms of Banach space tensor products and de�ne one that works wonders.

De�nition 1.5. Let X and Y be Banach spaces. A norm p on X�Y is a cross-norm if

p(x⊗ y) = ‖x‖‖y‖, x ∈ X, y ∈ Y.

The completion of X�Y with respect to the norm p is denoted by X⊗p Y.

If X and Y are Banach spaces, then for any w =
∑
i xi ⊗ yi ∈ X�Y, note that the map X∗×Y∗ → C

given by

(ϕ,ψ) 7→
n∑
i=1

ϕ(xi)ψ(yi)

is bilinear and hence induces a linear functional α : X∗�Y∗ → C by universality. If v ∈ X�Y has the
form v =

∑
j x
′
j ⊗ y′j and v = w, then v similarly induces a linear functional β : X∗�Y∗ → C. For any

ϕ ∈ X∗ and ψ ∈ Y∗, Corollary 1.6 then tells us that

α(ϕ⊗ψ) =
∑
i

ϕ(xi)ψ(yi) =
∑
i

(ϕ⊗ψ)(xi ⊗ yi) =
∑
j

(ϕ⊗ψ)(x′j ⊗ y′j) =
∑
j

ϕ(x′j)ψ(y′j) = β(ϕ⊗ψ),

so that any w ∈ X�Y gives rise to a unique linear functional αw : X∗ �Y∗ → C. Moreover,

|αw(ϕ⊗ ψ)| ≤ ‖ϕ‖‖ψ‖
n∑
i=1

‖xi‖‖yi‖.

De�nition 1.6. Let X and Y be Banach spaces. The projective tensor norm on X�Y is given by

γ(w) = inf

{
n∑
i=1

‖xi‖‖yi‖

∣∣∣∣∣ w =

n∑
i=1

xi ⊗ yi

}
, w ∈ X�Y.

The completion of X�Y with respect to γ is denoted by X�γ Y.

Hence for all w ∈ X � Y, we have |αw(ϕ ⊗ ψ)| ≤ ‖ϕ‖‖ψ‖γ(w) for all ϕ ∈ X and ψ ∈ Y. If p is a
cross-norm on X�Y and w =

∑
i xi ⊗ yi ∈ X�Y, we have

p(w) = p

(∑
i

xi ⊗ yi

)
≤
∑
i

‖xi‖‖yi‖,
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so by taking in�mums over all possible representations of w in X�Y, we see that p(w) ≤ γ(w). Once
we prove that the projective tensor norm is a cross-norm, we will then know that it is the largest
cross-norm on X�Y.

Proposition 1.37. The projective tensor norm is actually a cross-norm. If X and Y are Banach
∗-algebras, then γ is a ∗-algebra norm, i.e. γ also satis�es

γ(vw) ≤ γ(v)γ(w), γ(v∗) = γ(v), v, w ∈ X�Y.

Proof. For w ∈ X�Y, then by writing w =
∑
i xi ⊗ yi we have

ρ(λw) ≤
∑
i

‖λxi‖‖yi‖ = |λ|
∑
i

‖xi‖‖yi‖

for λ ∈ C; since the decomposition of w was arbitrary, we have ρ(λw) ≤ |λ‖ρ(w). Equality is clear if
λ = 0. If λ 6= 0, it follows from the above result that ρ(w) = ρ(λ−1(λw)) ≤ |λ|−1ρ(λw), so we �nally
have ρ(λw) = |λ|ρ(w).

For v, w ∈ X�Y, write v =
∑n
i=i xi⊗ yi and w =

∑m
i=n+1 xi⊗ yi for xi ∈ X and yi ∈ Y, i = 1, . . . ,m.

Thus

γ(v + w) ≤
m∑
i=1

‖xi‖‖yi‖ ≤
n∑
i=1

‖xi‖‖yi‖+

m∑
i=n+1

‖xi‖‖yi‖,

and therefore γ(v + w) ≤ γ(v) + γ(w), again by noting that the decomposition was arbitrary. If
w =

∑
i xi ⊗ yi ∈ X�Y satis�es γ(w) = 0, then for all ϕ ∈ X∗ and ψ ∈ Y∗ we have∑

i

ϕ(xi)ψ(yi) = αw(ϕ⊗ ψ) = 0.

For any i = 1, . . . , n, the Hahn-Banach theorem [13, Theorem 5.8] yields ψi ∈ Y∗ such that ψi(yi) 6= 0
and ψi(yj) = 0 for all j 6= i, so that we must have ϕ(xi) = 0 for all ϕ ∈ X∗. Therefore xi = 0 for all
i = 1, . . . , n, so w = 0, proving that γ is a norm. It is in fact a cross-norm: for x ∈ X and y ∈ Y, we
clearly have γ(w) ≤ ‖x‖‖y‖ if w = x⊗ y. The Hahn-Banach theorem yields ϕ ∈ X∗ and ψ ∈ Y∗ such
that ‖ϕ‖ = ‖ψ‖ = 1, ϕ(x) = ‖x‖ and ψ(y) = ‖y‖, telling us that

‖x‖‖y‖ = ϕ(x)ψ(y) = |αw(ϕ⊗ ψ)| ≤ ‖ϕ‖‖ψ‖|γ(w)| = |γ(w)|.

Thus γ is a cross-norm.

If X and Y are involutive Banach algebras, then it is clear that γ(w∗) ≤ γ(w) for all w ∈ X � Y,
proving that γ(w) = γ(w∗). Furthermore, note that

γ(vw) ≤
∑
i,j

‖xix′j‖‖yiy′j‖ ≤
∑
i,j

‖xi‖x′j‖‖yi‖y′j‖ ≤

(∑
i

‖xi‖‖yi‖

)∑
j

‖x′j‖‖y′j‖


if v =

∑
i xi ⊗ yi and w =

∑
j x
′
j ⊗ y′j so that γ(vw) ≤ γ(v)γ(w). This completes the proof.

Some of the properties of the projective tensor product norm in the Banach ∗-algebra case have a name
of their own, so let us get them straight.

De�nition 1.7. Let A and B be Banach ∗-algebras. A (semi-)norm p on A � B is called submulti�
plicative if it satis�es

p(xy) ≤ p(x)p(y), x, y ∈ A� B.

A C∗-norm (resp. C∗-seminorm) p on A� B is a submultiplicative norm (resp. semi-norm) if

p(x∗) = p(x), p(x∗x) = p(x)2, x ∈ A� B.

The following result will take us a long way since approximate identities has some nice properties with
respect to certain linear functionals.
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Proposition 1.38. Let A and B be C∗-algebras. If p is a cross-norm on A � B and (eα)α∈A and
(fβ)β∈B are bounded approximate identities for A and B respectively, then (eα ⊗ fβ)α,β is a bounded
approximate identity for A⊗p B.

Proof. For x =
∑n
i=1 ai ⊗ bi ∈ A� B, we have

p(x(eα ⊗ fβ)− x) = p

(
n∑
i=1

(aieα ⊗ bifβ − ai ⊗ bi)

)

= p

(
n∑
i=1

((aieα − ai)⊗ bifβ + ai ⊗ (bi − bifβ))

)

≤
n∑
i=1

(‖aieα − ai‖‖bifβ‖+ ‖ai‖‖bi − bifβ‖)

≤
n∑
i=1

(‖aieα − ai‖‖bi‖+ ‖ai‖‖bi − bifβ‖)→ 0.

Hence p(x(eα ⊗ fβ) − x) → 0 for all x ∈ A � B. Since p(eα ⊗ fβ) = ‖eα‖‖fβ‖ ≤ 1, it is not hard to
show by an ε

3 argument that the same holds for arbitrary x ∈ A⊗p B.

What happens with the completions of A�B with respect to p if p is a certain type of norm can hence
be described as follows:

q If p is a submultiplicative norm on A � B that satis�es p(x∗) = p(x), then A ⊗p B is a Banach
∗-algebra.

q If p is a cross-norm on A � B, then A ⊗p B has a bounded approximate identity. (This is just
Proposition 1.38.)

q If p is a C∗-norm on A� B, then A⊗p B is a C∗-algebra.

We recall that if p is a norm on A�B such that A⊗pB becomes a Banach ∗-algebra, then a continuous
positive linear functional ϕ ∈ A ⊗p B is said to be a state if ‖ϕ‖ = 1 and the set of states is denoted
by S(A⊗p B) (as it should be). As promised, we will now start uncovering from where C∗-norms on
algebraic tensor products arise. Perhaps surprisingly, we will see that the place of birth is in fact the
space of states. Of course, algebraic tensor products are not brought into the world with norms, so we
will de�ne a new type of state that nonetheless resembles our original de�nition quite a bit.

De�nition 1.8. Let A and B be C∗-algebras. A linear functional ϕ : A � B → C is algebraically
positive if ϕ(x∗x) ≥ 0 for all x ∈ A� B. If ϕ is algebraically positive and

‖ϕ‖alg := sup {|ϕ(a⊗ b)| | a ∈ (A)1, b ∈ (B)1} = 1,

ϕ is called an algebraic state. The set of algebraic states on A� B is denoted by S(A� B).

The next result resembles one we already know for unital C∗-algebras.

Proposition 1.39. Let A and B be unital C∗-algebras. Then an algebraically positive linear functional
ϕ : A� B → C is an algebraic state if and only if ϕ(1A ⊗ 1B) = 1.

Proof. For a ∈ (A)1 and b ∈ (B)1, then |ϕ(a⊗ b)|2 ≤ ϕ(a∗a⊗ b∗b)ϕ(1A ⊗ 1B) by the Cauchy-Schwarz
inequality. As a∗a ≤ 1A and b∗b ≤ 1B, then 1A − a∗a = x∗x and 1B − b∗b = y∗y for some x ∈ A and
y ∈ B, implying

0 ≤ ϕ((a⊗ y)∗(a⊗ y)) + ϕ((x⊗ 1B)∗(x⊗ 1B))

= ϕ(a∗a⊗ (1B − b∗b) + (1A − a∗a)⊗ 1B)

= ϕ(a∗a⊗ 1B − a∗a⊗ b∗b+ 1A ⊗ 1B − a∗a⊗ 1B)

= ϕ(1A ⊗ 1B)− ϕ(a∗a⊗ b∗b),

so |ϕ(a ⊗ b)| ≤ ϕ(1A ⊗ 1B) for all a ∈ (A)1 and b ∈ (B)1. This implies ‖ϕ‖alg = ϕ(1A ⊗ 1B), so the
result follows.
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And so it begins... or does it? As one may recall, all states on C∗-algebras are contractive by de�nition
(which is in itself a very helpful de�ning property). The de�nition of algebraic states depends only on
the C∗-algebras of which tensor products are taken, but as we can most likely de�ne a lot of di�erent
norms on C∗-norms, there is no way of ensuring that all algebraic states are contractive with respect
to these. We need to get this hurdle out of the way, and the natural way is the following.

De�nition 1.9. Let A and B be C∗-algebras. The set of algebraic states on the tensor product A�B
that are contractive with respect to a cross-norm p is denoted by Sp(A� B), i.e. ϕ ∈ Sp(A� B) if

|ϕ(x)| ≤ p(x), x ∈ A� B.

Now it begins.

Proposition 1.40. If A⊗p B becomes a Banach ∗-algebra for some cross-norm p on A� B, then

Sp(A� B) = {ϕ|A�B |ϕ ∈ S(A⊗p B)} .

Proof. Assume �rst that ϕ ∈ S(A⊗p B) and let χ be its restriction to A� B. Then χ is algebraically
positive, contractive with respect to p and

|χ(a⊗ b)| ≤ p(a⊗ b) = ‖a‖‖b‖, a ∈ A, b ∈ B.

If (eα)α∈A and (fβ)β∈B are bounded approximate identities for A and B respectively, then (eα⊗fβ)α,β
is a bounded approximate identity for A⊗p B by Proposition 1.38. Proposition 0.3 now yields

χ(eα ⊗ fβ) = ϕ(eα ⊗ fβ)→ ‖ϕ‖ = 1.

Hence ‖χ‖alg = 1, so χ ∈ Sp(A� B).

Conversely, if χ ∈ Sp(A � B), then χ extends to a contractive linear functional χ̃ on A ⊗p B by
Proposition A.1. Moreover, if x ∈ A ⊗p B and p(xn − x) → 0 for some sequence (xn)n≥1 in A � B,
then p(x∗nxn − x∗x)→ 0, implying that χ̃ is positive since we then have

ξ̃(x∗x) = lim
n→∞

ξ(x∗nxn) ≥ 0.

As ‖χ‖alg = 1 we see that ‖χ̃‖ ≥ 1, but since χ̃(eα ⊗ fβ) → ‖χ̃‖ as before, we also have ‖χ̃‖ ≤ 1 and
hence χ̃ ∈ S(A⊗p B). Moreover, if χ is the restriction of ϕ ∈ S(A⊗p B) to A� B then χ̃ = ϕ by the
uniqueness part of Proposition A.1, yielding a bijective correspondence between the two spaces.

The bijective correspondence of the last proof yields a way of identifying Sp(A � B) and S(A ⊗p B).
The weak∗ topology on S(A⊗p B) as a subspace of (A⊗p B)∗ hence induces a topology on Sp(A�B)
by restriction to A� B which we shall call the weak∗ topology on Sp(A� B).

Now note that for ϕ ∈ S(A� B) and x =
∑n
i=1 ai ⊗ bi ∈ A� B, we have

|ϕ(x)| ≤
n∑
i=1

|ϕ(ai ⊗ bi)| ≤
n∑
i=1

‖ai‖‖bi‖

and hence ϕ ∈ Sγ(A � B) where γ is the projective tensor norm on A � B. Noting that γ indeed
satis�es the conditions of Proposition 1.40, we have

S(A� B) = {ϕ|A�B |ϕ ∈ S(A⊗γ B)}.

Let ϕ ∈ S(A� B). As A⊗γ B is a Banach ∗-algebra, we obtain a GNS triple (Hϕ, πϕ, ξϕ) associated
with ϕ (or rather, the extension of ϕ to a state on A⊗γ B) such that for all x ∈ A� B, we have

ϕ(x) = 〈πϕ(x)ξϕ, ξϕ〉.

Therefore
|ϕ(x)| ≤ ‖πϕ(x)‖ ≤ γ(x), x ∈ A� B. (1.3)

To summarize, all this means that any ϕ ∈ S(A� B) admits a GNS triple (Hϕ, πϕ, ξϕ). As A� B is
dense in A⊗γ B, it follows that πϕ(A� B)ξϕ is dense in Hϕ.

Once we start working with C∗-norms, we obtain the following very surprising result, for which the
proof is nonetheless very easy.
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Proposition 1.41. Let p be a C∗-norm on A� B. Then

p(x) = sup{ϕ(x∗x)1/2 |ϕ ∈ Sp(A� B)}, x ∈ A� B.

Proof. For any ϕ ∈ Sp(A� B), Proposition 1.40 and the GNS construction on A⊗p B together yield
a GNS triple (Hϕ, πϕ, ξϕ) where ξϕ is a unit vector satisfying ϕ(x) = 〈πϕ(x)ξϕ, ξϕ〉 for all x ∈ A� B.
In particular, ϕ(x∗x) ≤ ‖πϕ(x)‖2 ≤ p(x)2 for all x ∈ A�B. For the converse, note that there exists a
faithful representation π : A⊗p B → B(H) for some Hilbert space H. For any unit vector ξ ∈ H, the
functional x 7→ 〈π(x)ξ, ξ〉 is a state on A⊗p B. Therefore Proposition 1.40 yields

sup{ϕ(x∗x)1/2 |ϕ ∈ Sp(A� B)} ≥ sup{‖π(x)ξ‖ | ξ ∈ (H)1} = ‖π(x)‖ = p(x)

for all x ∈ A� B and hence the proof is complete.

The aim is now to �nd a general method for constructing a C∗-norm on the tensor product. If
ϕ ∈ S(A� B), then by de�ning pϕ(x) = ‖πϕ(x)‖ for x ∈ A � B, where πϕ is the GNS representation
associated to ϕ as found above, we clearly obtain a C∗-seminorm. If Γ ⊆ S(A� B), we de�ne

pΓ(x) = sup
ϕ∈Γ
‖πϕ(x)‖, x ∈ A� B.

As ‖πϕ(x)‖ ≤ γ(x) for all ϕ ∈ Γ and x ∈ A� B, pΓ is a well-de�ned C∗-seminorm.

If pΓ is in fact a norm, we say that Γ is separating and denote the completion of A � B by A ⊗Γ B.
The set of algebraic states on A�B that are contractive with respect to pΓ is denoted by SΓ(A�B).
If ϕ ∈ Γ, then

|ϕ(x)| ≤ ‖πϕ(x)‖ ≤ pΓ(x), x ∈ A� B,

so Γ ⊆ SΓ(A � B). In fact, any C∗-norm p on A � B can be obtained in this way; since A ⊗p B is a
C∗-algebra, then we know that

π =
⊕

ϕ∈S(A⊗pB)

πϕ

is a faithful representation of A⊗p B (see page viii). Faithfulness of π then yields

p(x) = ‖π(x)‖ = sup
ϕ∈S(A⊗pB)

‖πϕ(x)‖, x ∈ A� B,

so by letting Γ = Sp(A� B), we obtain p = pΓ.

If A and B are unital and Γ is separating we have the following result, the proof of which needs a result
from Appendix A.

Lemma 1.42. Let A and B be unital C∗-algebras and let Γ ⊆ S(A�B) be convex and separating. Let

Γ′ = {ϕ ∈ S(A⊗Γ B) |ϕ|A�B ∈ Γ}.

Assume furthermore that it holds for all ϕ ∈ Γ and y ∈ A� B that there exists ψ ∈ Γ such that

ϕ(y∗xy) = ϕ(y∗y)ψ(x), x ∈ A� B.

Then Γ′ is weak∗-dense in S(A⊗Γ B) implying that Γ is weak∗-dense in SΓ(A� B), and

pΓ(x) = sup{ϕ(x∗x)1/2 |ϕ ∈ Γ}.

Proof. If ϕ ∈ Γ′ and y ∈ A � B, then there exists ψ ∈ Γ such that ϕ(y∗xy) = ϕ(y∗y)ψ(x) for all
x ∈ A � B. ψ is a restriction of a state ψ′ ∈ Γ′ on A ⊗Γ B by Proposition 1.40, in turn yielding
ϕ(y∗xy) = ϕ(y∗y)ψ′(x) for x ∈ A⊗Γ B by continuity.

Let x ∈ (A ⊗Γ B)sa and assume that ϕ(x) ≥ 0 for all ϕ ∈ Γ′. Then on the grounds of what we just
found, then for any ϕ ∈ Γ′ and y ∈ A� B, there is a state ψ ∈ Γ′ such that

〈πϕ(x)πϕ(y)ξϕ, πϕ(y)ξϕ〉 = ϕ(y∗xy) = ϕ(y∗y)ψ(x).
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As ϕ(y∗y)ψ(x) ≥ 0, we see that
〈πϕ(x)πϕ(y)ξϕ, πϕ(y)ξϕ〉 ≥ 0

for all ϕ ∈ Γ′ and y ∈ A � B. As A � B is dense in A ⊗Γ B, it follows that πϕ(x) is positive for all
ϕ ∈ Γ′. Hence if π =

⊕
ϕ∈S(A⊗ΓB) πϕ, we clearly have π(x) ≥ 0, so since π is faithful, we see that

x ≥ 0. But now Lemma A.4 tells us that Γ′ is weak∗-dense in S(A⊗ΓB) from which the second density
statement follows. Finally, Proposition 1.41 yields

pΓ(x) = sup{ϕ(x∗x)1/2 |ϕ ∈ SΓ(A� B)} = sup{ϕ(x∗x)1/2 |ϕ ∈ Γ},

because of weak∗ density.

So far we have worked quite a lot with C∗-norms but have not de�ned any. The Rolling Stones and
Beatles of C∗-norms on algebraic tensor products of C∗-algebras are the following.

De�nition 1.10 (Maximal norm). Let A and B be C∗-algebras. The maximal norm on A � B is
de�ned by

‖x‖max = sup{‖π(x)‖ |π is a representation of A� B}.

We let A⊗max B denote the completion of A� B with respect to ‖ · ‖max.

De�nition 1.11 (Minimal norm). Let A and B be C∗-algebras. Then the minimal norm on A�B is
given by ∥∥∥∥∥∑

i

ai ⊗ bi

∥∥∥∥∥
min

=

∥∥∥∥∥∑
i

π(ai)⊗ ρ(bi)

∥∥∥∥∥
B(H⊗K)

where π : A → B(H) and ρ : B → B(K) are faithful representations. We let A ⊗min B denote the
completion of A� B with respect to ‖ · ‖min.

It takes a bit of work to prove that the maximal and minimal norm are actually C∗-norms and that the
minimal norm is independent of the choice of representations, and we will not embark on this journey
here; for comments on this, see [4]. However, we will state the most important facts about the two
norms (and others) in the following theorem, to be used fervently later on.

Theorem 1.43. Let A and B be C∗-algebras. Then the following statements hold:

(i) ‖ · ‖min is independent of the choice of representations of A and B.
(ii) ‖ · ‖max and ‖ · ‖min are C∗-norms on A� B.
(iii) If p is a C∗-norm on A� B, then

‖ · ‖min ≤ p ≤ ‖ · ‖max.

(The �rst inequality is known as Takesaki's theorem.)

(iv) If p is a C∗-norm on A� B, then it is automatically a cross-norm.

(v) If C is a C∗-algebra and A ⊆ C, then there is a natural isometric inclusion A⊗min B → C⊗min B.
(vi)

Proof. See [4, Sections 3.3 and 3.4] and [4, Proposition 3.6.1].

For any two C∗-algebras A and B and ϕ ∈ S(A� B), then equation (1.3) immediately yields

|ϕ(x)| ≤ ‖x‖max, x ∈ A� B,

so we can conclude S(A� B) = Smax(A� B).

The aim of the last part of this section is to prove that the minimal norm can be expressed di�erently,
by de�ning a new C∗-norm which turns out to be equal to the minimal norm.

Lemma 1.44. Let A and B be C∗-algebras. If ϕ ∈ S(A) and ψ ∈ S(B), then ϕ� ψ ∈ S(A� B).
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Proof. Let (Hϕ, πϕ, ξϕ) and (Hψ, πψ, ξψ) be GNS representations of A and B corresponding to ϕ and ψ
respectively. For all a ∈ A and b ∈ B, we obtain a bounded linear operator πϕ(a)⊗πψ(b) ∈ B(Hϕ⊗Hψ)
by Corollary 1.22 satisfying

πϕ(a)⊗ πψ(b)(ξϕ ⊗ ξψ) = πϕ(a)ξϕ ⊗ πψ(b)ξψ.

For x =
∑n
i=1 ai ⊗ bi ∈ A� B with ai ∈ A and bi ∈ B for i = 1, . . . , n, we have

(ϕ� ψ)(x) =

n∑
i=1

ϕ(ai)ψ(bi)

=

n∑
i=1

〈πϕ(ai)ξϕ, ξϕ〉Hϕ〈πψ(bi)ξψ, ξψ〉Hψ

=

n∑
i=1

〈πϕ(ai)ξϕ ⊗ πψ(bi)ξψ, ξϕ ⊗ ξψ〉Hϕ⊗Hψ

=

n∑
i=1

〈πϕ(ai)⊗ πψ(bi)(ξϕ ⊗ ξψ), ξϕ ⊗ ξψ〉Hϕ⊗Hψ

=

n∑
i=1

〈πϕ � πψ(ai ⊗ bi)(ξϕ ⊗ ξψ), ξϕ ⊗ ξψ〉Hϕ⊗Hψ

= 〈πϕ � πψ(x), ξϕ ⊗ ξψ〉Hϕ⊗Hψ .

Hence if x = y∗y for some y ∈ A� B, we have

(ϕ� ψ)(x) = ‖(πϕ � πψ)(y)‖2Hϕ⊗Hψ ≥ 0,

yielding positivity. Moreover, it is clear that ‖ϕ � ψ‖alg ≤ 1. Taking sequences (an)n≥1 in A and
(bn)n≥1 in B such that |ϕ(an)| → ‖ϕ‖ = 1 and |ψ(bn)| → ‖ψ‖ = 1, we then have |ϕ�ψ(an⊗ bn)| → 1,
so ‖ϕ� ψ‖alg ≥ 1, proving that ϕ� ψ ∈ S(A� B).

The above result allows for the following de�nition:

De�nition 1.12. For C∗-algebras A and B, we de�ne a norm

‖x‖κ = sup{‖πϕ�ψ(x)‖ |ϕ ∈ S(A), ψ ∈ S(B)}, x ∈ A� B.

The completion of A� B with respect to ‖ · ‖κ is denoted by A⊗κ B.

We may of course inquire whether the above de�nition really yields a norm, and the most essential
things to know about ‖ · ‖κ are the following, which will be stated without proof. Note �rst that we
already know that ‖ · ‖κ is a C∗-seminorm since it is equal to pΓ for

Γ = S(A)⊗ S(B) = {ϕ� ψ |ϕ ∈ S(A), ψ ∈ S(B)}.

The proof itself requires knowledge about the enveloping von Neumann algebra which we will learn
about in Chapter 2.

Proposition 1.45. ‖ · ‖κ is a crossnorm and all linear functionals in A∗ �B∗, i.e. the linear span of
all linear functionals on A� B obtained by Corollary 1.6, are bounded with respect to ‖ · ‖κ.

Proof. See [28, Proposition 1.23].

Therefore ‖ · ‖κ is a C∗-norm. We denote the set of states on A�B that are contractive with respect
to ‖ · ‖κ by Sκ(A� B).

De�nition 1.13. For C∗-algebras A and B, we de�ne M(A,B) = A∗ � B∗ ∩ S(A � B). When the
C∗-algebras are clear from the context, we will just write M = M(A,B).
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It immediately follows from Lemma 1.44 and Proposition 1.45 that

S(A)⊗ S(B) ⊆M ⊆ Sκ(A� B).

Hence
‖x‖κ ≤ pM(x) = sup

ϕ∈M
‖πϕ(x)‖ ≤ sup

ϕ∈S(A⊗κB)

‖πϕ(x)‖ = ‖x‖κ, x ∈ A� B,

so ‖ · ‖κ = pM.Assume now that A and B are unital. Then S(A � B) is convex by Lemma 1.39. For

any ϕ ∈ M and y ∈ A � B such that ϕ(y∗y) 6= 0, write ϕ =
∑n
i=1 ωi � χi for ω1, . . . , ωn ∈ A∗ and

χ1, . . . , χn ∈ B∗ and y =
∑m
j=1 xi ⊗ yi. For i = 1, . . . , n, j, k = 1, . . . ,m, de�ne

ω′ijk(a) = ϕ(y∗y)−1/2ωi(x
∗
jaxk), χ′ijk(b) = ϕ(y∗y)−1/2χi(y

∗
j byk), a ∈ A, b ∈ B.

Clearly these functionals are linear and continuous. Then

n∑
i=1

m∑
j,k=1

ω′ijk(a)χ′ijk(b) =

n∑
i=1

∑n
j,k=1 ωi(x

∗
jaxk)χi(y

∗
j byk)

ϕ(y∗y)
=
ϕ(y∗(a⊗ b)y)

ϕ(y∗y)
.

De�ning ψ =
∑n
i=1

∑m
j,k=1 ω

′
ijk ⊗ χ′ijk, then ψ ∈ A∗ � B∗ and

ψ(x)ϕ(y∗y) = ϕ(y∗xy), x ∈ A� B.

As ψ is then algebraically positive and ψ(1A ⊗ 1B) = 1, it follows that ψ ∈ S(A � B), so M satis�es
the conditions of Lemma 1.42, yielding the following proposition:

Proposition 1.46. If A and B are unital C∗-algebras, then

‖x‖κ = sup{ϕ(x∗x)1/2 |ϕ ∈M}, x ∈ A� B.

We dive headlong into our next result.

Proposition 1.47. ‖ · ‖κ and ‖ · ‖min are equal C∗-norms.

Proof. Let π : A → B(H) and ρ : A → B(K) be faithful representations. Let

X1 = {ωξ ◦ π | ξ ∈ H, ‖ξ‖ = 1}, X2 = {ωη ◦ ρ | η ∈ K, ‖η‖ = 1},

where ωξ : B(H)→ C and ωη : B(K)→ C are given by

ωξ(S) = 〈Sξ, ξ〉, ωη(T ) = 〈Tη, η〉, S ∈ B(H), T ∈ B(K).

[9, Proposition 3.4.2] then yields that the convex hull of X1 (resp. X2) is weak∗-dense in S(A) (resp.
S(B)). For any ξ ∈ H and η ∈ K of norm 1 we have for all x ∈ A � B of the form x =

∑n
i=1 ai ⊗ bi

that

|(ωξ ◦ π)⊗ (ωη ◦ ρ)(x)| =

∣∣∣∣∣
n∑
i=1

〈(π(ai)⊗ ρ(bi))ξ ⊗ η, ξ ⊗ η〉

∣∣∣∣∣
≤ |〈(π ⊗ ρ)(x)ξ ⊗ η, ξ ⊗ η〉|
≤ ‖(π ⊗ ρ)(x)‖ = ‖x‖min.

This implies that ϕ� ψ ∈ Smin(A� B) for all ϕ ∈ S(A) and ψ ∈ S(B). Thus

‖x‖κ = sup{‖πϕ�ψ(x)‖ |ϕ ∈ S(A), ψ ∈ S(B)} ≤ sup{‖πω(x)‖ |ω ∈ Smin(A� B)} ≤ ‖x‖min.

But since ‖ · ‖min is the least possible C∗-norm by Takesaki's theorem (see Theorem 1.43), we must
have ‖ · ‖κ = ‖ · ‖min.

The preceding two propositions now tell us the following:

Corollary 1.48. For unital C∗-algebras A and B, we have

‖x‖min = sup{ϕ(x∗x)1/2 |ϕ ∈M}, x ∈ A� B.
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De�nition 1.14. A C∗-algebra A is said to be ⊗-nuclear if there is a unique C∗-norm on A� B for
any C∗-algebra B.

The last result is (unfortunately) stated without proof.

Theorem 1.49. Let A and B be C∗-algebras.

(i) If A is non-unital and B is unital, then there is a unique C∗-norm on A�B if and only if there
is a unique C∗-norm on Ã � B.

(ii) If A and B are both non-unital, then there is a unique C∗-norm on A� B if and only if there is
a unique C∗-norm on Ã � B̃.

(iii) If A is unital and B is non-unital, then there is a unique C∗-norm on A�B if and only if there
is a unique C∗-norm on A� B̃.

Proof. See [28, Theorem 1.36].

That this section leaves out a lot of important proofs irritates me a great deal, but the fact is that we
will not be using any of the results until Chapter 5 and even then the use of them will be downright
minimal. Hopefully the reader will have understood the point of being introduced to algebraic states,
for they really do explain a great deal about norms on algebraic tensor products, and the proof of
Corollary 1.48 is not exactly trivial. However that does not matter now; we have far more important
things to attend to.



CHAPTER 2

THE ULTRAWEAK OPERATOR TOPOLOGY

In a beginner's course on von Neumann algebras, one starts out by being introduced to the weak and
strong operator topologies on B(H) and a neophyte in the subject is perhaps fooled into thinking that
these topologies su�ce for proving all worthwhile results about von Neumann algebras. Experience
heals imbecility in this case; it might indeed be interesting to investigate whether topologies �ner than
the weak or strong operator topology and coarser than the norm topology exist, not only as a test for
the curious, but perhaps for an altogether new approach to understanding the properties of certain
subsets of bounded linear operators on Hilbert space.

In this chapter we will construct two other locally convex Hausdor� topologies on B(H) for a Hilbert
space H, proving not only immensely useful, but also necessary for understanding just how �exible a
von Neumann algebra actually is. The last statement will be re�ected in a wide array of concepts for
Hilbert spaces, von Neumann algebras and linear functionals on von Neumann algebras, not all of which
are directly related, but which nevertheless combine into the idea expressed in Section 2.11, namely
the enveloping von Neumann algebra of a C∗-algebra. The chapter also includes three intermezzos
presenting concepts that are not directly related at all to the ultraweak operator topology, but are put
here for three reasons: (1) for the greater good of the project structure-wise, (2) because they would
not �t in anywhere else and (3) because the ideas are too relevant to be relegated to an appendix. In
any case, the three intermezzos are in themselves very much related to one another and are absolutely
essential for the concepts introduced and proofs given in Chapter 4 and 5.

2.1 Towards �ner topologies

The details in the de�nition below are easily checked.

De�nition 2.1. The ultraweak topology on B(H) is the locally convex Hausdor� topology determined
by the separating family of seminorms

T 7→

∣∣∣∣∣
∞∑
n=1

〈Tξn, ηn〉

∣∣∣∣∣ , T ∈ B(H)

for sequences (ξn)n≥1 and (ηn)n≥1 of H with
∑∞
n=1 ‖ξn‖2 <∞ and

∑∞
n=1 ‖ηn‖2 <∞.

The ultrastrong topology on B(H) is the locally convex topology determined by the separating family
of seminorms

T 7→

[ ∞∑
n=1

‖Tξn‖2
]1/2

for T ∈ B(H), where (ξn)n≥1 is a sequence of H with
∑∞
n=1 ‖ξn‖2 <∞.

It is clear from the outset that Tα → T ultrastrongly implies Tα → T strongly and that Tα → T
ultraweakly implies Tα → T weakly. Furthermore, if Tα → T ultrastrongly in B(H), then Tα → T
ultraweakly as well. Indeed, for square-summable sequences (ξn)n≥1 and (ηn)n≥1 in H and T ∈ B(H),
then ∣∣∣∣∣

∞∑
n=1

〈Tξn, ηn〉

∣∣∣∣∣
2

≤

[ ∞∑
n=1

‖Tξn‖2
][ ∞∑

n=1

‖ηn‖2
]
≤ ‖T‖2

[ ∞∑
n=1

‖ξn‖2
][ ∞∑

n=1

‖ηn‖2
]
.

Finally, ultraweakly and ultrastrongly closed subsets of B(H) are also norm-closed.

29
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One could wonder if the ultraweak (resp. ultrastrong) topology could coincide with the weak (resp.
strong) in some case, and the following proposition provides a circumstance under which this is true;
the proof is quite elementary.

Proposition 2.1. Let T ∈ B(H) and let (Tα)α∈A be a bounded net in B(H). Then Tα → T ultraweakly
(resp. ultrastrongly) to T ∈ B(H) if and only if Tα → T weakly (resp. strongly). Hence the ultraweak
(resp. ultrastrong) and weak (resp. strong) topology coincide on bounded subsets of B(H).

Proof. The �only if� implications are trivial. Supposing that ‖Tα‖ ≤ M for all α ∈ A, then if ξ =
(ξn)n≥1 and η = (ηn)n≥1 are square-summable sequences in H, then for all N ≥ 1 and α ∈ A we �nd∣∣∣∣∣

∞∑
n=1

〈(Tα − T )ξn, ηn〉

∣∣∣∣∣ ≤
N∑
n=1

|〈(Tα − T )ξn, ηn〉|+ (M + ‖T‖)
∞∑

n=N+1

‖ξn‖‖ηn‖

≤
N∑
n=1

|〈(Tα − T )ξn, ηn〉|+ (M + ‖T‖)

[ ∞∑
n=N+1

‖ξn‖2
]1/2 [ ∞∑

n=N+1

‖ηn‖2
]1/2

by using the Cauchy-Schwarz inequality. For any ε > 0 then by �rst choosing an appropriate N to
make the second term arbitrarily small, then one can pick an α ∈ A such that the �rst term becomes
arbitrarily small as well, hence implying that Tα → T ultraweakly if Tα → T weakly. Similarly since
we have

∞∑
n=1

‖(Tα − T )ξn‖2 ≤
N∑
n=1

‖(Tα − T )ξn‖2 + (M + ‖T‖)
∞∑

n=N+1

‖ξn‖2

for all N ≥ 1 and α ∈ A, we see that Tα → T ultrastrongly if Tα → T strongly.

Throughout the project, we will mainly be considering and using the ultraweak topology. For the
following proposition, though, an understanding of the ultrastrong topology is absolutely essential.

Proposition 2.2. Let ω : B(H)→ C be a linear functional. Then the following are equivalent:

(i) ω is ultraweakly continuous.
(ii) ω is ultrastrongly continuous.
(iii) There exist sequences (ξn)n≥1 and (ηn)n≥1 of H with

∑∞
n=1 ‖ξn‖2 < ∞ and

∑∞
n=1 ‖ηn‖2 < ∞

such that

ω(T ) =

∞∑
n=1

〈Tξn, ηn〉.

Proof. (iii)⇒ (i)⇒ (ii) is clear, so we only need prove (ii)⇒ (iii). Suppose that ω is an ultrastrongly con�
tinuous linear functional on B(H). Then there exist square-summable sequences (ξ′1n )n≥1, . . . , (ξ

′m
n )n≥1

in H and C > 0 such that

|ω(T )| ≤ C
m∑
i=1

[ ∞∑
n=1

‖Tξ′in‖2
]1/2

for all T ∈ B(H) [13, Proposition 5.15]. De�ning a sequence (ξn)n≥1 by

ξ(i−1)m+j = ξ′ji , i ∈ N, 1 ≤ j ≤ m,

then
∑∞
n=1 ‖ξn‖2 =

∑∞
j=1

∑m
i=1 ‖ξ

′j
i ‖2 <∞, so (ξn)n≥1 ∈ HN and

|ω(T )| ≤ C

[ ∞∑
n=1

‖Tξin‖2
]1/2

.

De�ning K0 = {(Tξn)n≥1 ∈ HN |T ∈ B(H)} and let K denote the norm closure of K0 in HN. The
linear functional ϕ : K0 → C given by

ϕ((Tξn)n≥1) = ω(T )
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is then well-de�ned, and since ϕ is also bounded above by C, ϕ extends to a bounded linear functional
on the Hilbert space K by Proposition A.1. By the Riesz representation theorem [14, Theorem 2.3.1],
there exists (ηn)n≥1 ∈ K such that

ω(T ) = 〈(Tξn)n≥1, (ηn)n≥1〉 =

∞∑
n=1

〈Tξn, ηn〉,

proving (iii).

With this in mind, great things will happen. Read on.

2.2 The predual of an ultraweakly closed subspace

For ξ, η ∈ H de�ne a linear functional ωξ,η on B(H) by

ωξ,η(T ) = 〈Tξ, η〉.

Obviously, ωξ,η ∈ B(H)∗ with ‖ωξ,η‖ = ‖ξ‖‖η‖. For ξ ∈ H, we also de�ne ωξ = ωξ,ξ. If ξ is a unit
vector, then ωξ is a state on B(H); it is called a vector state.

De�nition 2.2. The subspace of B(H)∗ spanned by the bounded linear functionals ωξ,η is denoted
by B(H)∼, and the norm closure of B(H)∼ in B(H)∗ is denoted by B(H)∗.

It is clear from the outset that B(H)∼ is the set of weakly continuous linear functionals on B(H).
Proposition 2.2 would make one expect that B(H)∗ would then be the set of ultraweakly continuous
linear functionals on B(H), and indeed this is true, but the proof is not as obvious as one would think.

Recall that the set of �nite rank operators is the linear span of the rank one operators Eξ,η : H → H,
ξ, η ∈ H, given by

Eξ,η(x) = 〈x, ξ〉η, x ∈ H.

Indeed, if T ∈ B(H) has �nite rank n, then T (H) is a Hilbert space with a �nite orthonormal basis
(ηi)

n
i=1. Hence

Tξ =

n∑
i=1

〈Tξ, ηi〉ηi

for all ξ ∈ H. Putting ξi = T ∗ηi for i = 1, . . . , n yields that T =
∑n
i=1Eξi,ηi . On the other hand, if

T is a �nite linear combinations of Eξi,ηi 's, then T (H) is contained in the span of (ηi)
n
i=1, so T has

�nite-dimensional image. Operators of the form Eξ,η are called elementary operators.

We now turn to the �rst big proof of this chapter � it is like a Christmas present you do not think you
want when in fact you really need it.

Theorem 2.3. For any weakly continuous linear functional ω on B(H), there exist orthonormal sets
(ei)

n
i=1, (e′i)

n
i=1 in H and non-negative numbers λi, i = 1, . . . , n, such that

ω =

n∑
i=1

λiωei,e′i , ‖ω‖ =

n∑
i=1

λi.

Proof. We already know that ω has the form ω =
∑p
i=1 ωξi,ηi from Proposition 0.7. Assume that

ξ′1, . . . , ξ
′
q and η′1, . . . , η

′
q are elements of H such that the two �nite rank operators H → H given by

x 7→
∑p
i=1〈x, ηi〉ξi and x 7→

∑q
j=1〈x, η′i〉ξ′i for x ∈ H are in fact the same operator. Then

p∑
i=1

〈Eξ,ηξi, ηi〉 =

p∑
i=1

〈ξi, ξ〉〈η, ηi〉 =

〈
p∑
i=1

〈η, ηi〉ξi, ξ

〉
=

〈
q∑
i=1

〈η, η′i〉ξ′i, ξ

〉
=

q∑
i=1

〈ξ′i, ξ〉〈η, η′i〉

=

q∑
i=1

〈Eξ,ηξ′i, η′i〉

for all ξ, η ∈ H, so the functionals
∑p
i=1 ωξi,ηi and

∑q
i=1 ωξ′i,η′i agree on all �nite rank operators

by linearity. If P1 and P2 denotes the �nite rank orthogonal projections onto the linear spans of
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η1, . . . , ηp, η
′
1, . . . , η

′
q and ξ1, . . . , ξp, ξ

′
1, . . . , ξ

′
q respectively, then P1TP2 is �nite rank for all T ∈ B(H),

yielding

p∑
i=1

〈Tξi, ηi〉 =

p∑
i=1

〈TP2ξi, P1ηi〉 =

p∑
i=1

〈P1TP2ξi, ηi〉 =

q∑
i=1

〈P1TP2ξ
′
i, η
′
i〉 =

q∑
i=1

〈TP2ξ
′
i, P1η

′
i〉

=

q∑
i=1

〈Tξ′i, η′i〉.

Hence
∑p
i=1 ωξi,ηi =

∑q
i=1 ωξ′i,η′i .

Consider now the �nite rank operator x 7→
∑p
i=1〈x, ηi〉ξi; let us call it A. Note now that A∗A is positive

and has �nite rank and hence �nite spectrum σ(A∗A) = {µ1, . . . , µk} by Lemma A.15, consisting of
non-negative numbers only. Hence A∗A =

∑k
j=1 µjPj , where Pj = χj(A

∗A) for j = 1, . . . , k, χj
denoting the characteristic function of the one-point set {µj}. By uniqueness of the square root, we
see that

|A| = (A∗A)1/2 =

k∑
j=1

µ
1/2
j Pj

as it is positive with second power equal to A∗A. Because (Pj)
k
j=1 is a set of orthogonal �nite rank

projections in B(H), then by taking orthonormal bases for Pj(H) for j = 1, . . . , k and putting them
into one set e1, . . . , en, we then obtain an orthonormal set (ei)

n
i=1. For i = 1, . . . , n, let µ′i be the

number µj such that ei ∈ Pj(H). Then

|A|ξ =

k∑
j=1

µ
1/2
j Pjξ =

n∑
i=1

µ
′1/2
i 〈ξ, ei〉ei, ξ ∈ H.

Let A = U |A| be the polar decomposition of A with U being the partial isometry with initial space
|A|(H). Note that 〈Uei, Uej〉 = 〈ei, U∗Uej〉 = 〈ei, ej〉 for all i, j = 1, . . . , n, as ej ∈ |A|(H). By de�ning
e′i = Uei for all i = 1, . . . , n, then (e′i)

n
i=1 is an orthonormal set and

Aξ = U |A|ξ =

k∑
j=1

µ
1/2
j Pjξ =

n∑
i=1

µ
′1/2
i 〈ξ, ei〉e′i, ξ ∈ H.

De�ning λi = µ
′1/2
i for i = 1, . . . , n, then by what we �rst proved it follows that

ω =

p∑
i=1

ωξi,ηi =

n∑
i=1

λiωei,e′i .

It is clear that ‖ω‖ ≤
∑n
i=1 λn. If we put T =

∑n
i=1Eei,e′i , then note that

‖Tξ‖2 =

∥∥∥∥∥
n∑
i=1

Eei,e′iξ

∥∥∥∥∥
2

=

∥∥∥∥∥
n∑
i=1

〈ξ, ei〉e′i

∥∥∥∥∥
2

=

n∑
i=1

|〈ξ, ei〉|2 ≤ ‖ξ‖2

from Bessel's inequality [13, Theorem 5.26], so ‖T‖ ≤ 1; as ω(T ) =
∑n
i=1 λi〈Eei,e′iei, e

′
i〉 =

∑n
i=1 λi,

equality follows.

Corollary 2.4. B(H)∗ is the set of ultraweakly continuous linear functionals on B(H).

Proof. It is clear from Proposition 2.2 that all ultraweakly continuous linear functionals are contained
in B(H). For the converse inclusion, let ω ∈ B(H)∗ and let (ωn)k≥1 be a sequence of weakly continuous
functionals such that ‖ωn − ω‖ ≤ 2−n−2 for all n ≥ 1. Then ‖ωn − ωn−1‖ ≤ 2−n−2 + 2−n−1 < 2−n for
all n ≥ 2 and ‖ω1‖ ≤ ‖ω‖+ 2−3. De�ning ϕ1 = ω1 and ϕn = ωn − ωn−1 for all n ≥ 2, we obtain that
ϕn ∈ B(H)∼ for all n ≥ 1 with

ω =

∞∑
n=1

ϕn.
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The preceding theorem yields non-negative numbers λni , i = 1, . . . , kn and orthonormal sets en1 , . . . , e
n
kn

and e′n1 , . . . , e
′n
kn

such that

ϕn =

kn∑
i=1

λni ωeni ,e′ni

for all n ≥ 1. Note that
∑kn
i=1 λ

n
i < 2−n for all n ≥ 2 and

∑k1

i=1 λ
1
i < ‖ω‖+ 2−3. Hence

ω =

∞∑
n=1

kn∑
i=1

ω(λni )1/2eni ,(λ
n
i )1/2e′ni

,

with
∞∑
n=1

kn∑
i=1

‖(λni )1/2eni ‖2 =

∞∑
n=1

kn∑
i=1

λni ≤ ‖ω‖+ 2−3 +

∞∑
n=2

2−n <∞

and
∑∞
n=1

∑kn
i=1 ‖(λni )1/2e′ni ‖2 <∞ seen analoguously. Proposition 2.2 then yields that ω is ultraweakly

continuous and this proves the statement.

What we have obtained now is remarkable; the set of ultraweakly continuous linear functionals is in
fact a Banach space. To what use, one may ask, and one would be silenced very quickly in view of the
next result.

Proposition 2.5. The Banach space B(H) is isometrically isomorphic to the dual of the Banach space
B(H)∗ by the natural mapping Λ given by evaluation, i.e.

Λ: B(H)→ (B(H)∗)
∗, Λ(T )(ω) = ω(T ), T ∈ B(H), ω ∈ B(H)∗.

Proof. It is clear that Λ is well-de�ned and linear. For T ∈ B(H) and ω ∈ B(H)∗, we have

|Λ(T )(ω)| = |ω(T )| ≤ |ω‖‖T‖,

proving ‖Λ(T )‖ ≤ ‖T‖. To prove that Λ is actually an isometry, note that ωξ,η ∈ B(H)∗ for all
ξ, η ∈ H, whereupon we obtain from Lemma 1.24 that

‖T‖ = sup{|〈Tξ, η〉| | ξ, η ∈ H, ‖ξ‖ = 1, ‖η‖ = 1}
= sup{|ωξ,η(T )| | ξ, η ∈ H, ‖ξ‖ = 1, ‖η‖ = 1}
≤ sup{|Λ(T )(ωξ,η)‖ | ξ, η ∈ H, ‖ωξ,η‖ = 1}
≤ ‖Λ(T )‖.

For ϕ ∈ (B(H)∗)
∗, note that by de�ning

ϕ̃(ξ, η) = ϕ(ωξ,η), ξ, η ∈ H,

we obtain a bounded sesquilinear form on H. By the Riesz representation theorem [14, Theorem 2.4.1],
we obtain a unique operator T ∈ B(H) such that

ϕ(ωξ,η) = 〈Tξ, η〉, ξ, η ∈ H.

As 〈Tξ, η〉 = ωξ,η(T ) = Λ(T )(ωξ,η), it follows that Λ(T ) and ϕ coincide on B(H)∼. By continuity, it
follows that Λ(T ) = ϕ.

Note that in the above proof we only used the de�nition of B(H)∗, that is, we did not use Corollary 2.4.
We shall see now that the reason for this identi�cation comes from the fact that we are working with an
ultraweakly closed subspace of B(H), which the following results will make clear. For an ultraweakly
closed subspace M of B(H), let M⊥ denote the closed subspace of ultraweakly continuous linear
functionals ω on B(H) such that ω(M ) = {0}.

Lemma 2.6. If M is an ultraweakly closed subspace of B(H), then

M = M⊥⊥ := {T ∈ B(H) |ω(T ) = 0 for all ω ∈M⊥}.
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Proof. That M ⊆ M⊥⊥ is clear. If T ∈ B(H) \M , then it is a consequence of the Hahn-Banach
separation theorem [14, Corollary 1.2.13] that there exists an ultraweakly continuous linear functional
ω on B(H) with ω(T ) 6= 0 and ω(M ) = {0}.

Theorem 2.7. Let M be an ultraweakly closed subspace of B(H) and de�ne

M∼ := {ϕ|M |ϕ ∈ B(H)∼}, M∗ = {ϕ|M |ϕ ∈ B(H)∗}.

Then M∼,M∗ ⊆M ∗ and

(i) M∼ consists of all weakly continuous linear functionals on M .
(ii) M∗ consists of all ultraweakly continuous linear functionals on M .
(iii) M∗ is a norm-closed subspace of M ∗ and is the norm closure of M∼.
(iv) for any ω ∈M∗ and any ε > 0 there exists ϕ ∈ B(H)∗ such that ω = ϕ|M and ‖ϕ‖ ≤ ‖ω‖+ ε.
(v) M is isometrically isomorphic to (M∗)

∗ through the canonical identi�cation

ΛM : M → (M∗)
∗, ΛM (T )(ω) = ω(T ), T ∈M , ω ∈M∗.

Proof. (i) and (ii) follow from the Hahn-Banach extension theorem for locally convex topological vector
spaces [14, Theorem 1.2.14].

(iii) De�ne a surjection Ω̃ : B(H)∗ → M∗ by Ω̃(ϕ) = ϕ|M . Ω̃ is linear of norm ≤ 1 with kernel M⊥.
Hence it induces a linear map Ω: B(H)∗/M⊥ →M∗ de�ned by

Ω(ϕ+ M⊥) = ϕ|M .

Note that B(H)∗/M⊥ is a Banach space; hence we can prove that M∗ is closed in M ∗ by proving
that Ω is in fact isometric. Letting ϕ ∈ B(H)∗, then for all ψ ∈ ϕ+ M⊥ we have

‖Ω(ϕ+ M⊥)‖ = ‖Ω(ψ + M⊥)‖ = ‖ψ|M‖ ≤ ‖ψ‖,

so by taking the in�mum over all ψ, we obtain ‖Ω(ϕ+M⊥)‖ ≤ ‖ϕ+M⊥‖. Therefore Ω is contractive.
Take ϕ ∈ B(H)∗ \M⊥, i.e. such that

δ := inf
ω∈M⊥

‖ϕ+ ω‖ = ‖ϕ+ M⊥‖ > 0.

The Hahn-Banach theorem [13, Theorem 5.8] then provides a bounded linear functional Φ on B(H)∗
satisfying Φ(ϕ) = δ, ‖Φ‖ = 1 and Φ(M⊥) = {0}; using Proposition 2.5 we then obtain T ∈ B(H) such
that ϕ(T ) = Φ(ϕ) = δ, ‖T‖ = 1 and ω(T ) = 0 for all ω ∈M⊥. Hence T ∈M⊥⊥ = M , so

‖Ω(ϕ+ M⊥)‖ = ‖ϕ|M‖ ≥ |ϕ(T )| = δ = ‖ϕ+ M⊥‖.

Hence Ω is an isometric isomorphism, proving that M∗ is closed.

Since B(H)∼ is norm-dense in B(H)∗ and the bounded linear map ϕ 7→ ϕ|M maps B(H)∼ to M∼ and
B(H)∗ to M∗, it follows that M∼ is norm-dense in M∗. As M∗ is closed, we �nally obtain (iii).

(iv) For any ω ∈ M∗, then, on the grounds of what we just found, there exists ϕ0 ∈ B(H)∗ such
that ϕ0|M = ω and ‖ω‖ = ‖ϕ0 + M⊥‖. Hence for any ε > 0 there exists ϕ1 ∈ M⊥ such that
‖ϕ0 + ϕ1‖ ≤ ‖ω‖+ ε. By de�ning ϕ = ϕ0 + ϕ1 ∈ B(H)∗, then ϕ|M = ϕ0|M = ω and ‖ϕ‖ ≤ ‖ω‖+ ε.

(v) ΛM is clearly well-de�ned, linear and contractive. To see that ΛM is actually an isometry, let
T ∈M and ε > 0. For any ε > 0, take ϕ ∈ B(H)∗ with ‖ϕ‖ ≤ 1 such that |Λ(T )(ϕ)| ≥ ‖Λ(T )‖ − ε,
where Λ denotes the canonical identi�cation B(H)→ (B(H)∗)

∗. Then

‖ΛM (T )‖ ≥ |ΛM (T )(ϕ|M )| = |ϕ(T )| = |Λ(T )(ϕ)‖ ≥ ‖Λ(T )‖ − ε = ‖T‖ − ε,

so ‖ΛM (T )‖ ≥ ‖T‖. Hence ΛM is an isometry. Finally, let ϕ ∈ (M∗)
∗. De�ne a linear functional on

B(H)∗ by
Φ(α) = ϕ(α|M ), α ∈ B(H)∗.
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Then Φ is bounded and Φ(M⊥) = {0}. Hence there exists T ∈ B(H) such that

α(T ) = ϕ(α|M ), α ∈ B(H)∗.

In fact T ∈M since α(T ) = 0 for all α ∈M⊥, implying T ∈M⊥⊥. Therefore

ϕ(α|M ) = α|M (T ) = ΛM (T )(α|M ), α ∈ B(H)∗,

so ΛM (T ) = ϕ for some T ∈M . Hence ΛM is surjective.

All the magic tricks we have been developing so far requires a celebration of a kind, and why not start
out with a de�nition?

De�nition 2.3. For an ultraweakly closed subspace M of B(H), the Banach space M∗ from Theorem
2.7 is called the predual of M , and it consists of all ultraweakly continuous linear functionals on M .

The reason for the term is exactly because of statement (v) of Theorem 2.7; M∗ is the predual of
M in the sense that M can be identi�ed with the dual space of M∗. The canonical identi�cation
ΛM : M → (M∗)

∗ will be denoted by Λ if no illogical confusion can occur (one never knows, though).

A consequence of identifying an ultraweakly closed subspace M of B(H) with a dual space is that
we can compare the ultraweak topology on M with a well-known topology and obtain some very nice
results.

Corollary 2.8. Let M be an ultraweakly closed subspace of B(H). Then the canonical identi�cation
Λ: M → (M∗)

∗ is an ultraweak-to-weak∗ homeomorphism.

Proof. This follows the fact that M∗ = {ϕ|M |ϕ ∈ B(H)∗}, Proposition 2.2 and Corollary 2.4.

In particular, for a net (Tα)α∈A in M and T ∈ M , then Tα → T ultraweakly if and only if we have
ω(Tα) → ω(T ) for all ω ∈ M∗. We will use this fact a lot throughout the project, so the reader is
advised to keep it in mind.

Corollary 2.9. Let M be an ultraweakly closed subspace of B(H). Then (M )1 is ultraweakly compact.
In particular, (B(H))1 is ultraweakly compact.

Proof. Follows from Corollary 2.8 and Alaoglu's theorem [13, Theorem 5.18].

For our work to really have an in�uence, we reach into our analyst's hat and �nd a rabbit in form of
the Krein-�mulian theorem [6, Theorem V.12.1], namely that if X is a Banach space and S ⊆ X∗ is a
convex subset of its dual space, then S is weak∗-closed if and only if S ∩ (X∗)r is weak∗-closed for all
r > 0. This immediately leads to the following corollary.

Corollary 2.10. Let S be a convex subset of B(H). Then S is ultraweakly closed if and only if
S ∩ (B(H))r is ultraweakly closed for all r > 0.

Proof. Since the canonical identi�cation Λ: B(H)→ (B(H)∗)
∗ was an ultraweak-to-weak∗ homeomor�

phism and Λ(S ) is weak∗-closed if and only if Λ(S )∩ ((B(H)∗)
∗)r = Λ(S ∩ (B(H))r) is weak∗-closed

for all r > 0 by the Krein-�mulian theorem, the result follows.

We can then �nally summarize where our knowledge of preduals has taken us so far, by considering
convex subsets of B(H); since ∗-subalgebras are convex, one can imagine what good this �nal theorem
of this section will do.

Theorem 2.11. Let S be a convex subset of B(H). Then the following are equivalent:

(i) S is ultraweakly closed.
(ii) S is ultrastrongly closed.
(iii) (S )r is weakly closed for all r > 0.
(iv) (S )r is strongly closed for all r > 0.
(v) (S )r is ultraweakly closed for all r > 0.
(vi) (S )r is ultrastrongly closed for all r > 0.
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Proof. Since the set of ultraweakly continuous linear functionals coincides with the set of ultrastrongly
continuous linear functionals by Proposition 2.2, (ii)⇔ (i) follows from Theorem A.7. Since (S )r
is convex, the same theorem and Proposition 0.7 yields (iv)⇒ (iii) and (vi)⇒ (v). The implications
(iii)⇒ (iv) and (v)⇒ (vi) are trivial. Proposition 2.1 yields (i)⇒ (iii), (ii)⇒ (iv), (v)⇒ (iii) and (vi)⇒
(iv), and (v)⇔ (i) is just the statement of Corollary 2.10.

Corollary 2.12. Let M be an ultraweakly closed subspace of B(H), ω : M → C be a linear functional
and r0 > 0. Then the following are equivalent:

(i) ω is ultraweakly continuous.
(ii) ω is ultrastrongly continuous.
(iii) (resp. (iii.a)) ω is weakly continuous on (M )r for all r > 0 (resp. r = r0).
(iv) (resp. (iv.a)) ω is strongly continuous on (M )r for all r > 0 (resp. r = r0).
(v) (resp. (v.a)) ω is ultraweakly continuous on (M )r for all r > 0 (resp. r = r0).
(vi) (resp. (vi.a)) ω is ultrastrongly continuous on (M )r for all r > 0 (resp. r = r0).
(vii) There exist sequences (ξn)n≥1 and (ηn)n≥1 of H with

∑∞
n=1 ‖ξn‖2 < ∞ and

∑∞
n=1 ‖ηn‖2 < ∞

such that

ω(T ) =

∞∑
n=1

〈Tξn, ηn〉, T ∈M .

Proof. The following implications are clear: (i)⇒ (v), (ii)⇒ (vi), (iii)⇒ (v)⇒ (vi), (iii)⇒ (iv)⇒ (v),
(x)⇒ (x.a) for x ∈ {iii, iv, v, vi}, (iii.a)⇒ (iv.a)⇒ (vi.a) and (iii.a)⇒ (v.a)⇒ (vi.a). Furthermore,
Proposition 2.1 yields (i)⇒ (iii) and (ii)⇒ (iv) and Proposition 2.2 gives us (vii)⇔ (i)⇔ (ii), so it
su�ces only to prove (vi.a)⇒ (i). If ω satis�es (vi.a), let S = kerω ⊆M and let s > 0. If T ∈ B(H)
and Tα → T ultrastrongly for some net (Tα)α∈A in (S )s, then r0

s Tα ∈ (M )r0 for all α ∈ A. As
(M )r0 is ultrastrongly closed by Theorem 2.11, we see that r0

s T ∈ (M )r0 , so T ∈ (M )s. Moreover,
ω(Tα) → ω(T ), so T ∈ S ∩ (M )s = (S )s. Hence (S )s is ultraweakly closed for all s > 0. Because
S is convex, S is ultraweakly closed by Theorem 2.11, so ω is ultraweakly continuous [14, Corollary
1.2.5].

We do not know it yet, but the two results above are more than enough to show how lovely von
Neumann algebras really are.

2.3 Intermezzo 1: The central support

We will now deviate intermittently from what has been going on so far, in order to introduce some
extremely relevant concepts relating to von Neumann algebras, as well as introduce some notation that
proves very helpful in the next sections. H is once again a �xed Hilbert space.

Let T ∈ B(H) and let P be the projection onto T ∗(H), so that 1H − P is the projection onto kerT .
Then T (1H − P ) = 0, so T = TP . Conversely, if P1 ∈ B(H) is a projection satisfying TP1 = T ,
then for T (1H − P1)ξ = 0 for all ξ ∈ H. Hence 1H − P1 ≤ 1H − P or P ≤ P1, so P is the smallest
projection in B(H) satisfying T = TP ; it is called the right support of T and is denoted by Sr(T ). If
Q is the projection onto T (H), then 1H −Q is the projection onto kerT ∗. Hence T ∗(1H −Q) = 0, so
(1H −Q)T = 0 or T = QT . Similarly, one shows that Q is the smallest projection satisfying T = QT ;
it is called the left support of T and is denoted by Sl(T ). It is clear that Sr(T ) = Sl(T

∗), and if T is
contained in a von Neumann algebra M , M contains Sr(T ) and Sl(T ) as well [31, Corollary 17.6].

De�nition 2.4. For any von Neumann algebra M , we de�ne the center Z(M ) of M by

Z(M ) = M ∩M ′,

i.e. Z(M ) consists of all operators of M that commute with everything in M . Any projection in
Z(M ) is called a central projection of M .

Let M be a von Neumann algebra and let T ∈M . If R is any central projection of M that majorizes
the right support of T , RT = TR = TSr(T )R = T , so R majorizes the left support of T as well.
Taking the in�mum over all such projections, we obtain a unique central projection CT of M [31,
Proposition 24.1] that is the smallest central projection that majorizes the left and right supports of
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T . We have CT = CT∗ as well as CTT = TCT = T . If Q is a central projection of M such that
QT = 0, then because QCT is a projection and T − QCTT = T , it follows that 1H − QCT ≥ Sl(T )
and 1H −QCT ≥ Sr(T ). Hence 1H −QCT ≥ CT and QCT ≤ 1H − CT , so QCT = 0. CT is called the
central support of T . Let us summarize:

De�nition 2.5. For any operator T in a von Neumann algebra M ⊆ B(H), the central support of T
is the smallest central projection P of M such that

T (H) ⊆ P (H).

The central support of T is denoted by CT , and it satis�es CTT = TCT = T . Furthermore, if QT = 0
for some central projection Q, then Q and CT are orthogonal.

We will now, before �nding reasons that the notion of a central support is useful, introduce the
aforementioned relevant notation.

De�nition 2.6. Let M be a subset of B(H) and let X be a subset of H. We denote the closure of
the linear span of

MX = {Tξ |T ∈ S , ξ ∈ X} ⊆ H

by [MX]; [MX] is called the essential subspace of M with respect to X. If X = {ξ}, we write [M ξ]
instead of [MX].

First follow some facts about essential subspaces.

Lemma 2.13. Let M and N be subsets of B(H) that are closed under multiplication and furthermore
satisfy M ⊆ N . If it holds for subsets X and Y of H that X ⊆ [N Y], then [MX] ⊆ [N Y]. As a
consequence, [M [MX]] ⊆ [MX] for any subset X ⊆ H.

Proof. For non-zero T ∈ M and ξ ∈ X, we have ξ ∈ [N Y]. For any given ε > 0, we can take
T1, . . . , Tn ∈ N and ξ1, . . . , ξn ∈ Y such that ‖ξ −

∑n
i=1 Tiξi‖ <

ε
‖T‖ , whence

‖Tξ −
n∑
i=1

TTiξi‖ ≤ ε.

As TTi ∈ N for all i = 1, . . . , n, it follows that Tξ ∈ [N Y]. Hence we can conclude [MX] ⊆ [N Y].

Lemma 2.14. Let M be a self-adjoint subset of B(H) that is closed under multiplication and contains
the identity operator 1H, and let X be a subset of H. Then [MX] is the smallest among all closed
subspaces Y of H such that X ⊆ Y and the projection onto Y belongs to the von Neumann algebra M ′.

Proof. Since M is unital, X ⊆ [MX]. If P is the projection onto [MX], then for all T ∈M and ξ ∈ H,
we have TPξ = PTPξ by Lemma 2.13. Hence PTP = TP for all T ∈ M . Since M is self-adjoint
it also holds for T ∈ M that PT ∗P = T ∗P and hence PT = PTP , so we see that PT = TP and
P ∈M ′. If Y is a closed subspace such that X ⊆ Y and the projection Q onto Y belongs to M ′, for
all T ∈M and ξ ∈ X, we have Tξ = TQξ = QTξ ∈ Y, so [MX] ⊆ Y.

The next proposition is quite surprising � just take a look at it and wonder for a moment.

Proposition 2.15. Let M ⊆ B(H) be a von Neumann algebra and let X be a subset of H. Let
B = [MX]. Then

[M ′B] = [Z(M )′X].

Proof. Since M ⊆ Z(M )′, we have that the linear span of MX is contained in the linear span of
Z(M )′X, so B ⊆ [Z(M )′X]. The inclusion M ′ ⊆ Z(M )′ then yields [M ′B] ⊆ [Z(M )′X] by Lemma
2.13. Let P be the projection onto [M ′B]. We will show that P ∈ Z(M ). By Lemma 2.14, we have
P ∈ (M ′)′ = M , so we only need to show that P ∈M ′. For T ∈M , T ′ ∈M ′ and ξ ∈ B, we have

T (T ′ξ) = T ′(Tξ) ∈ T ′(B) ⊆ [M ′B],

as Tξ ∈ [MX] = B by Lemma 2.13. Hence T maps the linear span of M ′B into [M ′B], so by continuity
of T , T maps [M ′B] into [M ′B]. Therefore PTP = TP for all T ∈M . In the same manner as in the
previous proof, we see that PT = TP , so P ∈ Z(M ). Hence for T ∈ Z(M )′ and η ∈ X ⊆ [M ′B], we
have Tη = TPη = PTη ∈ [M ′B] and hence [Z(M )′X] ⊆ [M ′B] by taking norm closures.
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Why would one prove the above statement, one could again ask. The reason is the following, providing
a gateway to introducing a new von Neumann algebra specimen as well as proving some greatly needed
facts about it.

Corollary 2.16. Let X be a closed linear subspace of H such that the projection P onto X is contained
in a von Neumann algebra M . Then the projection onto [MX] is the central support of P .

Proof. Let Q be the projection onto [MX]. Since X ⊆ [MX], we have P = QP = PQ. Since P
commutes with all operators in M ′, then for any T ∈M ′ and ξ ∈ X, we have Tξ = TPξ = PTξ ∈ X.
Hence [M ′X] = X, so by Proposition 2.15, we have [MX] = [(M ′)′X] = [Z(M ′)′X] = [Z(M )′X].
By Lemma 2.14, [MX] is the smallest among all closed subspaces Y of H containing X such that
the projection onto Y is in Z(M ). Hence Q is a central projection that majorizes the left and right
supports of P . If R is another central projection in M that majorizes the left and right supports of
P , then for all ξ ∈ X, we have

ξ = Pξ = PSr(P )ξ = PRSr(P )ξ = RSr(P )ξ ∈ R(H),

so X ⊆ R(H). Therefore [MX] ⊆ R(H) and Q ≤ R, so Q is the central support of P .

Without further ado, let us construct a new von Neumann algebra.

2.4 Intermezzo 2: The reduced von Neumann algebra

For a non-zero projection P ∈ B(H) and a subset S of B(H), then PT = T for all T ∈ PS . De�ning

SP = {T |P (H) |T ∈ PS },

it is then clear that the restrictions in SP map into P (H), yielding that SP is a subset of bounded
linear operators on the Hilbert space P (H). If M is a ∗-subalgebra of B(H), then PM and MP are
∗-subalgebras as well.

Proposition 2.17 (The reduced von Neumann algebra). If M ⊆ B(H) is a von Neumann algebra
and P ∈M is a non-zero projection with X = P (H), then the following hold:

(i) MP and (M ′)P are von Neumann algebras on X.
(ii) the restriction map PMP →MP given by T 7→ T |X is a ∗-isomorphism.
(iii) (MP )′ = (M ′)P , allowing for the name M ′

P for these equal von Neumann algebras.
(iv) if A ⊆ B(H) is a closed set under multiplication and the adjoint operation that generates M , i.e.

M = A′′, then AP generates MP .
(v) if B ⊆ B(H) is a self-adjoint subset generating M ′, then BP generates (MP )′.
(vi) B(H)P = B(P (H)).

MP is called the reduced von Neumann algebra or corner algebra of M associated to P .

Proof. (ii) is straightforward; the proof of Lemma A.13 can easily be adjusted to work in this case. In
fact, (ii) holds for any P ∈ B(H) and any C∗-subalgebra M ⊆ B(H), as MP is also a C∗-algebra in
this case. (vi) is also immediate, just by extending any operator on X to H by de�ning it to be 0 on
the orthogonal complement X⊥.

It is clear that everything in MP commutes with everything in (M ′)P , as P ∈ M . If T ∈ B(X)
commutes with all PSP |X where S ∈ B, then by de�ning T1 = TP ∈ B(H) we see that

T1 ∈ B′ = B′′′ = M ′′ = M ,

as B′ is a von Neumann algebra whence T = PT1|X ∈MP . Thus (BP )′ ⊆MP . If we for a moment set
B = M ′, then we see that MP = ((M ′)P )′, so MP is a von Neumann algebra. Returning to arbitrary
self-adjoint subsets B ⊆ B(H), we have

(BP )′′ ⊇ (MP )′ = ((M ′)P )′′ ⊇ (M ′)P ⊇ BP ,

so (BP )′′ = (MP )′, and hence we obtain (v).
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Assume now that 1H ∈ A. We will show that (AP )′ ⊆ (M ′)P . Once we show this, we will have

(AP )′′ ⊇ ((M ′)P )′ = MP ⊇ AP ,

so that (AP )′′ = MP and hence (iv) holds; we will have

(M ′)P ⊆ ((M ′)P )′′ = (MP )′ = (AP )′ ⊆ (M ′)P ,

so that (M )′P is a von Neumann algebra and (M ′)P = (MP )′, giving us (i) and (iii), almost completing
the proof. We therefore have to show that for each T ∈ (AP )′ that T ∈ (M ′)P . It su�ces to show the
result for unitary operators by [31, Theorem 10.6], since (AP )′ is a von Neumann algebra.

First of all, note that by Corollary 2.16, CP is the projection onto [MX]. Additionally, we have
X ⊆ [AX] since 1H ∈ A. If Q is the projection onto [AX], then Q ∈ A′ = M ′ by Lemma 2.14. Hence
by the same lemma, we must have [MX] = [AX], so Q = CP .

Let U ∈ (AP )′ be unitary and let ξ1, . . . , ξn ∈ X and T1, . . . , Tn ∈ A. De�ning Tji = PT ∗j TiP |X for all
i, j = 1, . . . , n, we have Tji ∈ AP , so U commutes with all Tji. Hence∥∥∥∥∥

n∑
i=1

TiUξi

∥∥∥∥∥
2

=

n∑
i,j=1

〈TiPUξi, TjPUξj〉 =

n∑
i,j=1

〈PT ∗j TiPUξi, Uξj〉 =

n∑
i,j=1

〈TjiUξi, Uξj〉

=

n∑
i,j=1

〈Tjiξi, ξj〉 =

∥∥∥∥∥
n∑
i=1

Tiξi

∥∥∥∥∥
2

.

By Proposition A.1, there exists a unique isometric linear operator S : [AX]→ [AX] satisfying

S

(
n∑
i=1

Tiξi

)
=

n∑
i=1

TiUξi, T1, . . . , Tn ∈ A, ξ1, . . . , ξn ∈ X,

which we can extend to an operator S ∈ B(H) by de�ning it to be zero on the orthogonal complement
of [AX]. In addition, SQ = QS = S. For any T ∈ A, T1, . . . , Tn ∈ A, and ξ1, . . . , ξn ∈ X, we have

ST

(
n∑
i=1

Tiξi

)
= S

(
n∑
i=1

TTiξi

)
=

n∑
i=1

TTiUξi = T

(
n∑
i=1

TiUξi

)
= TS

(
n∑
i=1

TiUξi

)
,

so ST and TS agree on [AX] by continuity. Hence for any ξ ∈ H, we have

TSξ = TSQξ = STQξ = SQTξ = STξ,

since Q projects onto [AX] and Q is central. Therefore S ∈ A′ = M ′. Moreover, Sξ = Uξ for all
x ∈ X, so U = PSP |X ∈ (M ′)P .

If 1H /∈ A then by putting A1 = A ∪ {1H}, we have ((A1)P )′ ⊆ (M ′)P on the grounds of what we
have just proved. As (A1)P = AP ∪{1X}, then by assuming that T ∈ (AP )′, then T clearly commutes
with everything in (A1)P , so we see that (AP )′ ⊆ (M ′)P . Hence it follows from the case of 1H ∈ A
that (i), (iii) and (iv) hold for the case 1H /∈ A.

Let M be a von Neumann algebra and P ∈ M a projection. The map M ′ → PM ′P given by
T ′ 7→ PT ′P = PT is then a surjective ∗-homomorphism. Combining this with the isomorphism of (ii)
in the above proposition, we obtain a surjective ∗-homomorphism M ′ → (M )′P given by T ′ 7→ PT ′|X.
Suppose that CP = 1M . If X = P (H), then by Corollary 2.16, H = [MX]. If T ′ ∈ M ′ is such that
PT ′|X = 0, then T ′(X) = PT ′(X) = {0}, so T ′T (X) = TT ′(X) = {0} for all T ∈M . Since H = [MX],
T ′ is 0 on a dense subset of H, and therefore T ′ = 0. We can therefore conclude the following:

Proposition 2.18. If M is a von Neumann algebra and P ∈ M is a projection with CP = 1, then
M ′ and (M )′P are ∗-isomorphic.

To �nish o� this section with a bang, we will investigate what can be derived from the simple notion
of reduced von Neumann algebras, with no extra strings attached. The �rst important fact is this very
handy isomorphism theorem.
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Proposition 2.19. Let M ⊆ B(H) be a von Neumann algebra and let (Pα)α∈A any family of non-zero
pairwise orthogonal projections in M ′. If

∑
α∈A Pα converges strongly to the identity, then M is

∗-isomorphic to the direct sum
⊕

α∈A MPα by the ∗-isomorphism Ω: M →
⊕

α∈A MPα given by

Ω(T ) = (PαT |Pα(H))α∈A.

Proof. Note �rst that H is isomorphic to the Hilbert space
⊕

α∈AHα where Hα = Pα(H) by the
unitary operator

U : H 3 ξ 7→ (Pαξ)α∈A.

The only nontrivial hurdle to overcome in a proof of this is to prove that U is surjective. If (ξα)α∈A,
then (

∑
α∈F ξα)F⊆A is a Cauchy net where the F are �nite subsets of A. To see this, let S ⊆ A be a

�nite subset such that ∑
α∈A\S

‖ξα‖2 < ε2.

Indeed, for �nite subsets F and G of A with S ⊆ F and S ⊆ G, then we have∥∥∥∥∥∑
α∈F

ξα −
∑
α∈G

ξα

∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑

α∈F\G

ξα −
∑

α∈G\F

ξα

∥∥∥∥∥∥
2

=
∑

α∈F\G

‖ξα‖2 +
∑

α∈G\F

‖ξα‖2

=
∑

α∈F∪G
‖ξα‖2 −

∑
α∈F∩G

‖ξα‖2

≤
∑
α∈A
‖ξα‖2 −

∑
α∈S
‖ξα‖2

< ε2

as the ξα's are orthogonal. Hence there exists ξ ∈ H such that ξ = limF

∑
α∈F ξα =

∑
α∈A ξα. For

α ∈ A, note that Pαξ =
∑
β∈A Pαξβ = Pαξα = ξα, hence proving surjectivity of U and that

U−1((ξα)α∈A) =
∑
α∈A

ξα.

Going abruptly back to Ω, it is not hard to see that it is unital, linear and multiplicative. For T ∈M ,
then for (ξα)α∈A, (ηα)α∈A ∈

⊕
α∈AHα we have

〈(PαT ∗|Hα)α∈A(ξα)α∈A, (ηα)α∈A〉 =
∑
α∈A
〈T ∗ξα, ηα〉

=
∑
α∈A
〈ξα, Tηα〉

= 〈(ξα)α∈A, (PαT |Hα)α∈A(ηα)α∈A〉,

so Ω preserves involutions. If PαS|Hα = PαT |Hα for S, T ∈M and all α ∈ A, then

Sξ =
∑
α∈A

PαSPαξ =
∑
α∈A

PαTPαξ = Tξ

for all ξ ∈ H, so S = T . Let T ′ = (Tα)α∈A ∈
⊕

α∈A MPα , and de�ne T : H → H by T = U−1T ′U . T
is bounded and linear, and for any S ∈M ′, we see that PαS|Hα ⊆M ′

Pα
for all α ∈ A, so for all ξ ∈ H

we have

TSξ =
∑
α∈A

TαPαSξ =
∑
α∈A

TαPαSPαξ =
∑
α∈A

PαSTαPαξ = S

(∑
α∈A

TαPαξ

)
= STξ.

Hence T ∈M ′′ = M and as

Ω(T )ξ = (PαU
−1T ′Uξα)α∈A = (Pα

∑
β∈A

Tαξα)α∈A = (Tαξα)α∈A = T ′ξ

for ξ = (ξα)α∈A, we �nd that Ω is surjective.
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Before introducing the next result, concerning tensor products of reduced von Neumann algebras, some
discussion is required. For Hilbert spaces H and K and closed subspaces H0 ⊆ H and K0 ⊆ K, then it
is immediate that H0 ⊗K0 is isomorphic to the norm closure of H0 �K0, the latter being considered
as a subspace of H ⊗ K. Hence we can consider H0 ⊗ K0 as a closed subspace of H ⊗ K. Hence if
P1 ∈ B(H) and P2 ∈ B(K) are projections, then for any ω =

∑n
i=1 ξi ⊗ ηi ∈ H �K, we have

(P1 ⊗ P2)ω =

n∑
i=1

P1ξi ⊗ P2ηi ∈ P1(H)⊗ P2(K),

Hence (P1 ⊗ P2)(H⊗K) ⊆ P1(H)⊗ P2(K) since such ω are dense in H⊗K. The reverse inclusion is
clear, so we have (P1 ⊗ P2)(H⊗K) = P1(H)⊗ P2(K) as subsets of H⊗K.

Proposition 2.20. Let M ⊆ B(H) and N ⊆ B(K) be von Neumann algebras. If P1 and P2 are
projections of M and N , respectively, then

(M ⊗N )P1⊗P2
= MP1

⊗NP2

as subsets of B(P1(H)⊗ P2(K)).

Proof. M ⊗N is generated by operators of the form
∑n
i=1 Si ⊗ Ti where Si ∈M and Ti ∈ N for all

i = 1, . . . , n. Hence by Proposition 2.17, (M ⊗N )P1⊗P2 is generated by operators of the form

(P1 ⊗ P2)

(
n∑
i=1

Si ⊗ Ti

)
(P1 ⊗ P2)|(P1⊗P2)(H⊗K) =

n∑
i=1

(P1SiP1)|P1(H) ⊗ (P2TiP2)|P2(K) ∈MP1
⊗NP2

,

so (M ⊗N )P1⊗P2
⊆MP1

⊗NP2
. The reverse inclusion is obtained by going backwards.

The big deal about reduced von Neumann algebras is of course that we do not often know a lot about
a given von Neumann algebra, but reducing it by sometimes more than one appropriate projection
might yield a great deal of knowledge one would not be able to acquire at the outset. The third and
�nal intermezzo is a great example of this.

2.5 Closure properties of von Neumann algebras

Von Neumann algebras are usually de�ned by means of the strong or weak operator topology. In this
section we shall not only see what von Neumann algebras have to do with the topologies de�ned in
this chapter, but prove a more �exible version of a well-known theorem for von Neumann algebras,
namely von Neumann's bicommutant theorem (originally stated in Theorem 0.9). The only fact that
we will take for granted here is that commutants of self-adjoint sets are always weakly closed, the proof
of which is easy but can be found in [31, Proposition 18.1].

Before progressing, let us take a deep breath and introduce three relevant concepts. The third will
be the center of focus in this section, while the �rst two will be the focal point in the next couple of
sections, including the third intermezzo.

De�nition 2.7. Let M be a ∗-subalgebra of B(H) and let X ⊆ H. X is cyclic for M if [MX] = H.
X is separating for M if for any T ∈M , Tξ = 0 for all ξ ∈ X implies T = 0. If X = {ξ}, we say that
ξ is a cyclic or separating vector for M . Note that if M is a von Neumann algebra, then a cyclic or
separating vector for M must necessarily be non-zero.

The connection between the two above concepts is the following.

Proposition 2.21. Let M ⊆ B(H) be a ∗-subalgebra and X ⊆ H a subset. Then the following
conditions are equivalent:

(i) X is cyclic for M .
(ii) X is separating for M ′.

Proof. Assume that X is cyclic for M and that T ∈ M ′ satis�es Tξ = 0 for all ξ ∈ X. For any
S ∈ M and ξ ∈ X, we then have T (Sξ) = STξ = 0, so T [MX] = {0}, implying T = 0. If X is
separating for M ′, let P denote the orthogonal projection onto [MX]. Then P ∈M ′ by Lemma 2.14
and (1H − P )X = {0}, so 1H − P = 0 and hence [MX] = H.
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The weakest (as in largest) possible cyclic subset is of course H itself, and a special name is in order
if H is cyclic for some ∗-subalgebra of B(H).

De�nition 2.8. If M is a ∗-subalgebra of B(H), M is said to be nondegenerate on H if H is cyclic
for M , i.e. if [MH] = H.

Note that a ∗-subalgebra of B(H) is nondegenerate at once if it contains the identity operator.

Lemma 2.22. Let M be a ∗-subalgebra of B(H). Then for ξ ∈ H, the following are equivalent:

(i) ξ ∈ [MH]⊥.
(ii) Tξ = 0 for all T ∈M .

Proof. If Tξ = 0 for all T ∈M , then for all η ∈ H and T ∈M we have

〈ξ, Tη〉 = 〈T ∗ξ, η〉 = 0

since M is self-adjoint, so ξ ∈ [MH]⊥. If ξ ∈ [MH]⊥, we see that

‖Tξ‖2 = 〈ξ, T ∗Tξ〉 = 0

and hence Tξ = 0 for all T ∈M .

Corollary 2.23. Let M be a ∗-subalgebra of B(H). Then the following are equivalent:

(i) M is nondegenerate.
(ii) For any non-zero ξ ∈ H, there exists T ∈M such that Tξ 6= 0.

Proof. M is nondegenerate if and only [MH]⊥ = {0}.

Lemma 2.24. Let M be a ∗-subalgebra of B(H) and let B = {x ∈ H |Tx = 0 for all T ∈M }. Then
[MH] and B are orthogonal complements in H and if P denotes the orthogonal projection onto [MH],
then T = TP = PT for all T ∈M .

Proof. By Lemma 2.22, [MH]⊥ = B. If Q denotes the orthogonal projection onto B, then for all
T ∈M we have TQ = 0, so T = T (1H −Q) = TP . This implies T ∗ = T ∗P for T ∈M , so by taking
adjoints, we see that T = PT .

The next two lemmas concern properties of nondegenerate ∗-subalgebras.

Lemma 2.25. Let M be a nondegenerate ∗-subalgebra of B(H). Then ξ ∈ [M ξ] for all ξ ∈ H.

Proof. Let P be the orthogonal projection onto [M ξ]. Then for all T ∈M , we have PTP = TP and
by taking adjoints, we see that PT ∗ = PT ∗P . Because M is a self-adjoint set, we see that

PT = TP = PTP

for all T ∈M , i.e. P ∈M ′. If ξ′ = Pξ and ξ′′ = (1H − P )ξ then ξ = ξ′ + ξ′′, but since

Tξ′ = TPξ = PTξ = Tξ

for all T ∈M , then Tξ′′ = 0 for all T ∈M . Hence ξ′′ = 0 by Corollary 2.23, so ξ = ξ′ ∈ [M ξ].

Lemma 2.26. Let M be a nondegenerate ∗-subalgebra of B(H). Then for any ξ ∈ H, S ∈ M ′′ and
ε > 0, there exists T ∈M such that

‖(S − T )ξ‖ < ε.

In particular, the strong operator closure of M contains the identity operator.

Proof. Let P be the orthogonal projection onto [M ξ]. We saw above that P ∈ M ′, so P commutes
with everything in M ′′. Therefore PSP = SP , so Sξ ∈ S[M ξ] ⊆ [M ξ] by the above lemma, yielding
the result.

In proofs of the �simpler� version of the bicommutant theorem, one has a stronger version of the above
lemma in the case where the ∗-subalgebra is unital, so one might wonder if the following holds:
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Lemma 2.27. Let M be a nondegenerate ∗-subalgebra of B(H). Then for any ξ1, . . . , ξn ∈ H, S ∈M ′′

and ε > 0, there exists T ∈M such that

‖(S − T )ξi‖ < ε, i = 1, . . . , n.

In fact it does hold, and the following somewhat messy lemma will help us out a lot.

Lemma 2.28. Let M be a nondegenerate ∗-subalgebra of B(H) and let I be a non-empty set. Moreover,
let ∆: B(H)→ B(HI) be given by

∆(T )(ξi)i∈I = (Tξi)i∈I , (ξi)i∈I ∈ HI .

Then ∆ is a unital ∗-homomorphism, ∆(M ) is a nondegenerate ∗-subalgebra of B(HI) and we have
an inclusion ∆(M ′′) ⊆ ∆(M )′′.

Proof. First of all ∆ is well-de�ned: we indeed have ∆(T ) ∈ B(HI) with ‖∆(T )‖ ≤ ‖T‖ for all
T ∈ B(H). It is straightforward to check that ∆ is unital, linear and multiplicative; furthermore for
all (ξi)i∈I , (ηi)i∈I ∈ HI , we note that

〈∆(T )(ξi)i∈I , (ηi)i∈I〉 =
∑
i∈I
〈Tξi, ηi〉 =

∑
i∈I
〈ξi, T ∗ηi〉 = 〈(ξi)i∈I ,∆(T ∗)(ηi)i∈I〉,

so ∆(T )∗ = ∆(T ∗) for all T ∈ B(H). Hence ∆ is a ∗-homomorphism. Additionally, if ξ = (ξi)i∈I ∈ HI
is non-zero, then there exists i ∈ I such that ξi 6= 0. Because M is nondegenerate, Corollary 2.23
yields T ∈ M such that Tξi 6= 0, hence implying ∆(T )ξ 6= 0, so ∆(M ) is nondegenerate by the
same corollary. Finally, the equation (1.2) in the proof of Proposition 1.33(ii), p. 17, provides the last
inclusion.

Proof of Lemma 2.27. De�ne ∆: B(H) → B(Hn) by ∆(T )(η1, . . . , ηn) = (Tη1, . . . , Tηn). Then by
Lemma 2.28, ∆(M ) is a nondegenerate ∗-subalgebra of B(Hn) with ∆(M ′′) ⊆ ∆(M )′′. Apply Lemma
2.26 to the ∗-algebra ∆(M ) to obtain T ∈M such that

‖∆(S)−∆(T )(ξ1, . . . , ξn)‖ < ε,

immediately yielding what we want.

All of this leads to this really important density theorem.

Theorem 2.29 (The von Neumann density theorem). Let M be a nondegenerate ∗-subalgebra of
B(H). Then

M = M ′′

where M denotes the closure of M in any one of the weak, strong, ultraweak or ultrastrong operator
topologies.

Proof. Since the ultrastrong closure of M is contained in any of the closures of M in the above
topologies and M ′′ is weakly closed, it su�ces to show that M ′′ is contained in the ultrastrong closure
of M . De�ne ∆: B(H)→ B(HN) by

∆(T )(ξn)n≥1 = (Tξn)n≥1.

Then ∆(M ) is a nondegenerate ∗-subalgebra by Lemma 2.28. Let T ∈M ′′ and

ξ1 = (ξ1
n)n≥1, . . . , ξ

m = (ξmn )n≥1

be sequences in H satisfying
∑∞
n=1 ‖ξin‖2 <∞ for all i = 1, . . . , n, i.e. ξi ∈ HN for all i = 1, . . . , n. For

any ε > 0, then by applying Lemma 2.27 to the ∗-subalgebra ∆(M ) of B(HN), there exists S ∈ M
such that

ε > ‖(∆(S)−∆(T ))(ξin)n≥1‖ =

[ ∞∑
n=1

‖(S − T )ξin‖2
]1/2

for all i = 1, . . . , n. From this we infer that every ultrastrong neighbourhood of T contains elements of
M , so it follows that T is contained in the ultrastrong closure of M . Hence the result follows.



44 CHAPTER 2. THE ULTRAWEAK OPERATOR TOPOLOGY

If the preceding result could in any way be likened to the Sage's blessing of the earth in the �rst part
of Igor Stravinsky's Le Sacre du Printemps, then the following corollary is the ecstatic dancing of the
tribes therein.

Theorem 2.30 (The von Neumann bicommutant theorem). Let M be a nondegenerate ∗-subalgebra
of B(H). Then the following are equivalent:

(i) M = M ′′.
(ii) (resp. (ii.a)) M (resp. (M )1) is weakly closed.
(iii) (resp. (iii.a)) M (resp. (M )1) is strongly closed.
(iv) (resp. (iv.a)) M (resp. (M )1) is ultraweakly closed.
(v) (resp. (v.a)) M (resp. (M )1) is ultrastrongly closed.

If any of the above conditions hold, M is a von Neumann algebra.

Proof. The implications (iv)⇔ (v), (iv)⇒ (iv.a), (v)⇒ (v.a) and (ii.a)⇔ (iii.a)⇔ (iv.a)⇔ (v.a) follow
immediately from Theorem 2.11. If (M )1 is ultraweakly closed, then (M )1 ⊆ (B(H))1 is also ultra�
weakly compact by Corollary 2.9. Hence (M )r is ultraweakly compact for all r > 0 (since the map
T 7→ rT is ultraweakly-to-ultraweakly continuous), so Theorem 2.11 yields that M is ultraweakly
closed. Hence the conditions (ii.a), (iii.a), (iv), (iv.a), (v) and (v.a) are equivalent. Finally, the impli�
cations (i)⇒ (ii)⇒ (iii)⇒ (v) are trivial, so it su�ces to show (v)⇒ (i), but this follows immediately
from von Neumann's density theorem.

Hence von Neumann algebras are closed in any of the operator topologies de�ned, and in order to check
whether a nondegenerate ∗-subalgebra of B(H) is a von Neumann algebra, one only needs consider its
closed unit ball.

The above theorem is perhaps the greatest testament to how powerful the von Neumann density
theorem really is. The next result is another great o�shoot of that theorem, comparable to the e�ect
of buying a new deodorant.

Lemma 2.31. Let M be an ultraweakly closed ∗-subalgebra of B(H). Then the orthogonal projection
P onto [MH] belongs to M and majorizes any other projection in M .

Proof. Let X = [MH]. Lemma 2.24 told us that PT = TP = T for all T ∈ M , so PMP = M .
As P |X is the identity operator on X, then MP is a unital and hence nondegenerate ∗-subalgebra
on X. As the map M → MP given by T 7→ T |X is obviously ultraweakly-to-ultraweakly continuous
and a surjective isometry by the proof of Proposition 2.17(ii), and (M )1 is ultraweakly compact by
Corollary 2.9, it follows that (MP )1 is ultraweakly compact and hence MP is ultraweakly closed by
von Neumann's bicommutant theorem. Therefore 1X ∈MP by the von Neumann density theorem, so
there is Q ∈M such that Q|X = 1X. For ξ ∈ H, write ξ = ξ1 + ξ2 with ξ1 ∈ X and ξ2 ∈ X⊥; then

Qξ = Qξ1 +Qξ2 = ξ1 +QPξ2 = ξ1 = Pξ,

so P = Q ∈M and therefore P is the greatest projection of M .

Proposition 2.32. Let M ⊆ B(H) be a von Neumann algebra and let J be an ultraweakly closed
left ideal of M . Then M is weakly closed, and there exists a unique projection P ∈ M such that
J = {T ∈M |T = TP}. If J is two-sided, then P is a central projection.

Proof. Let K = J ∩ J∗; then K is an ultraweakly closed ∗-subalgebra of M . By virtue of Lemma 2.31,
let P be the greatest projection of K, and let

J0 = {T ∈M |T = TP}.

We know that P ∈ J, so if T ∈ J0, then obviously T ∈ J since J is a left ideal. On the other hand, if
T ∈ J with polar decomposition T = U |T |, then |T | = U∗T ∈ J. Hence |T | ∈ K, so |T | = |T |P and
therefore

TP = U |T |P = U |T | = T,



2.6. THE JORDAN DECOMPOSITION 45

implying J = J0. If Q is a projection of M such that J = {T ∈ M |T = TQ}, then P = PQ and
Q = QP , so P = P ∗ = (PQ)∗ = QP = Q. If J is two-sided, then for any T ∈ M , PT ∈ J, so
PT = PTP . Using this for T and T ∗, we see that

PT = PTP = (PT ∗P )∗ = (PT ∗)∗ = TP,

so P is central.

The last result of this chapter is Kaplansky's density theorem, generalizing [31, Theorem 19.5].

Theorem 2.33 (Kaplansky's density theorem). Let M be a ∗-subalgebra of B(H), and let N be the
strong (or weak) operator closure of M and let r > 0. Then

(i) (M )r is strongly dense in (N )r;
(ii) if T is a self-adjoint operator in (N )r, T is contained in the strong operator closure of the set of

self-adjoint operators in (M )r;
(iii) if N is a von Neumann algebra and T is a positive operator in (N )r, T is contained in the

strong operator closure of the set of positive operators in (M )r.

Proof. The proof contained in [31, Theorem 19.5] (or [14, Theorem 5.3.5] for that matter) does not
require M to be a C∗-algebra, and the replacement of (M )1 by (M )r requires the proof therein to
change the strongly continuous real function vanishing at in�nity by

t 7→
{

t |t| ≤ r
r2

t |t| > r.

For (iii), if we assume that T ∈ (N )r and T ≥ 0, then since N is a unital C∗-algebra, there exists
S ∈ Nsa with ‖S‖ ≤ r1/2 such that S2 = T . Hence by (ii) there exists a net of self-adjoint operators
(Sα)α∈A in (M )r1/2 converging strongly to S. Therefore S2

α → T strongly, as the net (Sα)α∈A is
bounded, so by setting Tα = S2

α, then because Tα is positive and ‖Tα‖ ≤ r for all α ∈ A, we have
found a net of positive operators in M converging strongly to T , bounded by r.

Of all the sections in this chapter, this one might just be the most beautiful one. Everything is short
and sweet, not too complicated, and yet it cannot be overstated how much power so many of the
results have. Much of this project indeed relies extensively on von Neumann's and Kaplansky's density
theorems and we shall start exploiting them shortly, but �rst we will head into completely di�erent
terrain.

2.6 The Jordan decomposition

This section covers the Jordan decomposition, a way of decomposing any linear functional on a
C∗-algebra into a �nite linear combination of positive linear functionals. Recall that a linear func�
tional ϕ : A → C on a C∗-algebra A is Hermitian if it satis�es ϕ(x∗) = ϕ(x) for all x ∈ A.

Theorem 2.34 (The Jordan decomposition). For any C∗-algebra A, then any bounded Hermitian
linear functional ω : A → C is the di�erence of two positive linear functionals ω+ and ω− on A such
that

ω = ω+ − ω−, ‖ω‖ = ‖ω+‖+ ‖ω−‖.

In particular, every element in A∗ is a linear combination of at most four states on A.

Proof. Assume �rst that A is unital and let S(A) denote the state space of A. S(A) is convex and
compact in the weak∗ topology on A∗ [31, Proposition 13.8] since A is unital. If S = S(A)∪ (−S(A)),
then note that because S(A) is convex, then the convex hull of S is given by

convS = {λω1 − µω2 |ω1, ω2 ∈ S(A), λ+ µ = 1, λ, µ ≥ 0}.

Hence convS is the image of the map S(A)× S(A)× [0, 1]→ A∗ given by

(ω1, ω2, λ) 7→ λω1 − (1− λ)ω2.

Since this map is continuous if A∗ and S(A) are given the weak∗ topology and the product is given
the product topology, it follows since S(A)× S(A)× [0, 1] is compact that convS is weak∗-compact.
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Assume now that ω is a bounded Hermitian linear functional on A; we can furtherly assume that ω
is non-zero. Let ω′ = ‖ω‖−1ω, so that ‖ω′‖ = 1 and ω′ is Hermitian. We claim that ω′ ∈ convS and
prove it by assuming for contradiction that ω′ /∈ convS. Since {ω′} and convS are convex subsets of
A∗, then by the Hahn-Banach separation theorem and Lemma A.3 we can �nd x ∈ A and µ ∈ R such
that

Reγ(x) ≤ µ ≤ Reω′(x)

for all γ ∈ convS. If x = x1 + ix2 is the decomposition of x into self-adjoint elements, then for y = x1

we have
γ(y) = Reγ(x) ≤ µ ≤ Reω′(x) = ω′(y)

for all γ ∈ convS, since they are Hermitian along with ω′. Moreover, since y is self-adjoint, we have
‖y‖ = |ϕ(y)| for some ϕ ∈ S(A) or ‖y‖ = ϕ(y) for some ϕ ∈ S. Hence ω′(y) ≤ ‖y‖ ≤ µ, contradicting
the above inequality. Hence ω′ ∈ convS, so ω′ = λω1 + µω2 for λ, µ ≥ 0, λ+ µ = 1 and ω1, ω2 ∈ S(A).
Then

‖ω′‖ = 1 = λ+ µ = λ‖ω1‖+ µ‖ω2‖ = ‖λω1‖+ ‖µω2‖.
Hence by putting ω+ = λ‖ω‖ω1 and ω− = µ‖ω‖ω2, we obtain the desired decomposition.

Supposing now that A is not unital, let Ã denote the unitalisation of A. If ω is a bounded Hermitian
linear functional on A, then the linear functional ω̃ : Ã → C given by ω̃(a + λ1Ã) = ω(a) for a ∈ A
and λ ∈ C is bounded and Hermitian, so by virtue of what we just proved there exist positive linear
functionals ω̃+, ω̃− on Ã such that ω̃ = ω̃+− ω̃−. By restricting ω̃+ and ω̃− to A, we obtain the desired
decomposition of ω.

Finally, let ω ∈ A∗. By de�ning the linear functionals ω1, ω2 on A by

ω1(a) =
ω(a) + ω(a∗)

2
, ω2(a) =

ω(a)− ω(a∗)

2i
, a ∈ A,

it is readily seen that ω1 and ω2 are Hermitian and that ω = ω1 + iω2. Since both ω1 and ω2 can be
written as linear combinations of at most two states, the last statement follows.

We will need an equivalent condition to the equality of norms above later:

Proposition 2.35. Let A be a unital C∗-algebra and let ϕ+ and ϕ− be positive linear functionals on
A. Then the following are equivalent:

(i) ‖ϕ+ − ϕ−‖ = ‖ϕ+‖+ ‖ϕ−‖.
(ii) For any ε > 0 there is a positive element a ∈ (A)1 such that ϕ+(1A − a) < ε and ϕ−(a) < ε.

Proof. Suppose �rst that ‖ϕ+−ϕ−‖ = ‖ϕ+‖+ ‖ϕ−‖ and let ε > 0. Since ϕ+−ϕ− is Hermitian, then
by [31, Proposition 13.3] and [31, Theorem 13.5] there exists b ∈ (Asa)1 such that

ϕ+(b)− ϕ−(b) + ε ≥ ‖ϕ+ − ϕ−‖ = ‖ϕ+‖+ ‖ϕ−‖ = ϕ+(1A) + ϕ−(1A).

Hence ϕ+(1A − b) + ϕ−(1A + b) ≤ ε. Since 0 ≤ 1A − b ≤ 2 and 0 ≤ 1A + b ≤ 2 by the continuous
functional calculus, de�ne a = 1

2 (1A+b) so that 1A−a = 1
2 (1A−b). Then a is positive with 0 ≤ a ≤ 1.

Then
ϕ+(1A − a) + ϕ−(a) =

1

2
(ϕ+(1A − b) + ϕ−(1A + b)) < ε.

Since ϕ+(1A − a) ≥ 0 and ϕ−(a) ≥ 0, we must have ϕ+(1A − a) < ε and ϕ−(a) < ε, so (ii) follows.

Suppose that (ii) holds and note that ‖ϕ+ − ϕ−‖ ≤ ‖ϕ+‖ + ‖ϕ−‖. For any ε > 0, take a positive
element a ∈ (A)1 such that ϕ+(1A − a) < ε and ϕ−(a) < ε, and note that σ(2a− 1A) ⊆ [−1, 1], so

‖ϕ+‖+ ‖ϕ−‖ = ϕ+(1A) + ϕ−(1A)

≤ ϕ+(1A) + ϕ−(1A) + (4ε− 2ϕ+(1A − a)− 2ϕ−(a))

= ϕ+(2a− 1A) + ϕ−(1A − 2a) + 4ε

= (ϕ+ − ϕ−)(2a− 1A) + 4ε

≤ ‖ϕ+ − ϕ−‖+ 4ε.

Since ε > 0 was arbitrary, we have ‖ϕ+‖+ ‖ϕ−‖ ≤ ‖ϕ+ − ϕ−‖.
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2.7 Normal linear functionals

We now turn towards a pseudo-new type of linear functional, the notion of which can be expanded to
positive maps of von Neumann algebras. The reason that the word pseudo-new is emphasized is that
the whole chapter will now start resembling the movie Sleuth directed by Joseph L. Mankiewicz. If you
have not seen that movie, stop reading right now and spend the next two and a half hours having a
blast with the sheer euphoria of being �lmically manipulated so e�ectively; then return to the project.

Movie-related obsessions and pretensions aside, here comes a de�nition.

De�nition 2.9. Let M be a von Neumann algebra and ω ∈M ∗. We say that ω is normal if it holds
for any bounded increasing net (Tα)α∈A of self-adjoint operators in M that (ω(Tα))α∈A converges to
ω(supα∈A Tα) (see Theorem 0.8). We denote the space of normal linear functionals on M by Mn.

As we shall see, the notation of Mn will be completely expendable in a few pages or so.

Before we go any further, we introduce some useful notation. M ∗ can be canonically equipped with a
Banach M -bimodule structure by de�ning

(T · ω)(S) = ω(ST ), (ω · T )(S) = ω(TS), ω ∈Mn, S, T ∈M ,

by means of the inequalities ‖T · ω‖ ≤ ‖T‖‖ω‖ and ‖ω · T‖ ≤ ‖T‖‖ω‖. Furthermore, for any ω ∈M ∗,
we de�ne ω∗ ∈M ∗ by

ω∗(T ) = ω(T ∗).

Note that the equation ω = ω∗ just states that ω is Hermitian.

The next lemma proves useful things concerning normal functionals.

Lemma 2.36. Let M ⊆ B(H) be a von Neumann algebra. Then:

(i) Mn is a norm-closed subspace of M ∗.
(ii) For any ω ∈Mn, ω∗ ∈Mn.
(iii) For any ω ∈Mn and T ∈M , we have that T · ω and ω · T belong to Mn.
(iv) For any ω ∈Mn with ω = ω∗, then the Jordan decomposition of ω yields normal positive linear

functionals ω+ and ω− such that

ω = ω+ − ω−, ‖ω‖ = ‖ω+‖+ ‖ω−‖.

Proof. (i) It is easily veri�ed that Mn is a subspace of M ∗. Let (ωn)n≥1 be a sequence of Mn

converging in norm to ω and let (Tα)α∈A be a bounded increasing net of self-adjoint operators in M
with supremum and strong operator limit T . Then ‖Tα − T‖ ≤ λ for some λ > 0 and all α ∈ A. Let
ε > 0 and pick n ≥ 1 such that ‖ω − ωn‖ < ε

2λ and α0 ∈ A such that |ωn(T − Tα)| < ε
2 for all α ≥ α0.

Then
‖ω(T − Tα)‖ ≤ ‖ω − ωn‖‖T − Tα‖+ |ωn(T − Tα)| < ε

for all α ≥ α0 so that ω ∈Mn.

(ii) Since the de�nition of normality only mentions self-adjoint operators, we trivially obtain ω∗ ∈Mn.

(iii) If T ∈ M and (Sα)α∈A is a bounded increasing net of self-adjoint operators converging strongly
to S, then (T ∗SαT )α∈A is a bounded increasing net of self-adjoint operators converging strongly to
T ∗ST . Hence T · ω · T ∗ ∈Mn. Because

ST =
1

4

3∑
n=0

in(T + in1H)∗S(T + in1H)

for any operators S and T , we have

T · ω =
1

4

3∑
n=0

in(T + in1H) · ω · (T + in1H)∗ ∈Mn



48 CHAPTER 2. THE ULTRAWEAK OPERATOR TOPOLOGY

for all T ∈M . Because Mn is ∗-invariant, ω · T = (T ∗ · ω)∗ ∈Mn.

(iv) The Jordan decomposition itself (Proposition 2.34) yields that ω decomposes in the way described
above. Thus it will su�ce to prove that ω+ and ω− are normal. Since ‖ω+ − ω−‖ = ‖ω+‖+ ‖ω−‖, it
follows from Proposition 2.35 that for any ε > 0 there exists a positive operator T such that 0 ≤ T ≤ 1,
ω+(1H − T ) < ε and ω−(T ) < ε. For all S ∈M we then have

|ω+(S)− ω(TS)| ≤ |ω+(S)− ω+(TS) + ω−(TS)|
≤ |ω+((1H − T )S)|+ |ω−(TS)|
≤ |ω+((1H − T )1/2(1H − T )1/2S)|+ |ω−(T 1/2T 1/2S)|

≤ (ω+(1H − T )ω+(S∗(1H − T )S)
1/2

+ (ω−(T )ω−(S∗TS)
1/2

≤ ω+(1H − T )1/2‖ω+‖1/2‖S‖+ ω−(T )1/2‖ω−‖1/2‖S‖
≤ ε1/2(‖ω+‖1/2 + ‖ω−‖1/2)‖S‖.

Hence ‖ω+−ω · T‖ ≤ ε1/2(‖ω+‖1/2 + ‖ω−‖1/2). Since ω · T and Mn is norm-closed, it follows that ω+

and hence ω− belong to Mn.

The proof of the next lemma is somewhat confusing, but do not think that the statement itself is
unimportant. It is not only elegant, but it also becomes extremely useful later on.

Lemma 2.37. Let M ⊆ B(H) be a von Neumann algebra and ω a normal state on M . Then there is
a family (Pi)i∈I of non-zero mutually orthogonal projections in M with

∑
i∈I Pi = 1H such that Pi · ω

is weakly continuous for all i ∈ I.

Proof. By Zorn's lemma we can �nd a maximal family (Pi)i∈I of non-zero mutually orthogonal projec�
tions in M such that Piω is weakly continuous for all i ∈ I. We claim that P =

∑
i∈I Pi = 1H; suppose

not. Choose a unit vector ξ ∈ P (H)⊥ and de�ne a linear functional ψ : M → C by ψ(T ) = 2〈Tξ, ξ〉.
Using Zorn's lemma once more, we can �nd a maximal family (Qj)j∈J of mutually orthogonal projec�
tions in M such that ω(Qj) ≥ ψ(Qj) and Qj ≤ 1 − P for all j ∈ J , and put Q =

∑
j∈J Qj . Since ω

and ψ are normal, ω(Q) ≥ ψ(Q). We must have 1− P −Q 6= 0, since otherwise

2 = ψ(1− P ) = ψ(Q) ≤ ω(Q) ≤ 1.

Put P1 = 1− P −Q. If E is a projection majorized by P1, then (1− P )E = (1− P )P1E = P1E = E,
so E ≤ 1−P . Moreover, EQj = E(1−P −Q)Qj = E(Qj−Qj) = 0 for all j ∈ J . Hence ω(E) < ψ(E)
since the family (Qj)j∈J was maximal. Since any positive element of M can be approximated in
norm by positive �nite linear combinations of projections (cf. [31, Exercise 20.2]), it follows that
ω(P1TP1) ≤ ψ(P1TP1) for any positive T ∈M . Hence

|ω(TP1)|2 ≤ ω(1H)ω(P1T
∗TP1) ≤ ψ(P1T

∗TP1) = 2‖TP1ξ‖2, T ∈M ,

so P1 · ω is strongly continuous and hence weakly continuous by Proposition 0.7. Since P1 ≤ 1 − P ,
we have P1Pi = QPi = Q(1 − P )Pi = 0, contradicting maximality of the family (Pi)i∈I . Hence∑
i∈I Pi = 1H, so we are done.

We are almost ready for the big result, but we must �rst take a detour. The more relevant result of
the next two is for now the last one, but it requires the �rst result, the proof of which is somewhat
unelegant (in the opinion of the author), but extremely essential in the last section of the next chapter.

Proposition 2.38. Let A be a C∗-algebra and let π : A → B(H) be a representation with M = π(A).
If ξ ∈ H and ωξ denotes the vector functional associated with ξ, then the following holds:

(i) If T ∈M ′ is self-adjoint and 0 ≤ T ≤ 1H, then the functional θT : A → C given by

θT (a) = ωTξ(π(a)) = 〈π(a)Tξ, Tξ〉 = 〈π(a)ξ, T 2ξ〉, a ∈ A,

is a positive linear functional that is dominated by ωξ ◦ π.
(ii) Any positive linear functional on A that is dominated by ωξ ◦ π is of the form θT for some

self-adjoint T ∈M ′ such that 0 ≤ T ≤ 1H.
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Proof. It is obvious that θT is positive for any T ∈M ′ and for a ∈ A, we have

θT (a∗a) = 〈π(a)Tξ, π(a)Tξ〉 = ‖π(a)Tξ‖2 = ‖Tπ(a)ξ‖2 ≤ ‖π(a)ξ‖2 = ωξ(π(a∗a)),

so θT is dominated by ωξ ◦ π, hence proving (i).

Let ϕ ∈ A∗ such that 0 ≤ ϕ ≤ ωξ ◦ π. It then follows for a, b ∈ A that

|ϕ(b∗a)|2 ≤ ϕ(a∗a)ϕ(b∗b) ≤ ‖π(a)ξ‖2‖π(b)ξ‖2

by Proposition 0.1. Note that if c, d ∈ A satisfy π(a)ξ = π(c)ξ and π(b)ξ = π(d)ξ, then

|ϕ(b∗a− d∗c)| ≤ |ϕ(b∗(a− c))|+ |ϕ((b− d)∗c)| ≤ ‖π(a− c)ξ‖‖π(b)ξ‖+ ‖π(c)ξ‖‖π(b− d)ξ‖ = 0,

so that the map Φ0 : M ξ ×M ξ → C given by

Φ0(π(a)ξ, π(b)ξ) = ϕ(b∗a), a, b ∈ A

is then a well-de�ned sesquilinear form of norm less than or equal to 1 on the subspace M ξ of H.
Moreover, it is Hermitian, i.e.

Φ0(Sξ, Tξ) = Φ0(Tξ, Sξ), S, T ∈M ,

and positive, i.e. Φ0(Tξ, Tξ) ≥ 0 for T ∈M , because ϕ is positive and hence Hermitian. By Corollary
A.2 Φ0 thus extends to a bounded, Hermitian and positive sesquilinear form Φ on [M ξ] of norm ≤ 1.
As [M ξ] is a Hilbert space, it follows from the Riesz representation theorem [14, Theorem 2.4.1] that
there exists an operator T0 ∈ B([M ξ]) with ‖T0‖ ≤ 1 such that

ϕ(b∗a) = 〈T0π(a)ξ, π(b)ξ〉, a, b ∈ A.

It is clear that T0 is positive, and by extending T0 to H by de�ning it to be 0 on the orthogonal
complement, then the resultant operator, which we will still denote by T0, stays positive. Moreover,
for a, b, c ∈ A, we have

〈T0π(c)π(a)ξ, π(b)ξ〉 = ϕ(b∗ca) = ϕ((c∗b)∗a) = 〈T0π(a)ξ, π(c)∗π(b)ξ〉 = 〈π(c)T0π(a)ξ, π(b)ξ〉.

Hence π(c)T0 = T0π(c) on [M ξ] for all c ∈ A. Additionally, for η ∈ [M ξ]⊥ we have

〈π(c)η, π(a)ξ〉 = 〈η, π(c∗a)ξ〉 = 0,

so π(c)η ∈ [M ξ]⊥. This implies π(c)T0 = T0π(c) on H for all c ∈ A, so T0 ∈ M ′. De�ning T =
(T0)1/2 ∈ M ′, then 0 ≤ T ≤ 1H. Letting (eα)α∈A be an approximate identity for A, we have for all
a ∈ A that

ϕ(eαa) = 〈T0π(a)ξ, π(eα)ξ〉 = 〈π(aeα)Tξ, Tξ〉 = ωTξ(π(aeα))→ ωTξ(π(a))

and ϕ(eαa)→ ϕ(a); hence ϕ = ωTξ ◦ π, completing the proof.

Corollary 2.39. Let M be a C∗-subalgebra of B(H) and let ξ, η ∈ H. If ωξ,η : M → C is a positive
linear functional on M , there exists ζ ∈ H such that ωξ,η = ωζ on M .

Proof. Let T ∈ M be positive. Then ωξ,η(T ) = 〈Tξ, η〉 = 〈ξ, Tη〉 = 〈Tη, ξ〉 = ωη,ξ(T ) by the
assumption that ωξ,η was positive, we �nd since

〈T (ξ + η), ξ + η〉 − 〈〈T (ξ − η), ξ − η〉 = 2〈Tξ, η〉+ 2〈Tη, ξ〉

that
4ωξ,η(T ) = 2ωξ,η(T ) + 2ωη,ξ(T ) = ωξ+η(T )− ωξ−η(T ) ≤ ωξ+η(T ).

Thus ωξ,η ≤ ω 1
2 ξ+

1
2 ξ
. We can then apply Proposition 2.38 with π equal to the identity M → B(H).

After seemingly going in wildly di�ering directions up until now, we nonetheless combine all of the
above into one big lump of greatness. The next theorem can take your breath away if you are not
prepared.
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Theorem 2.40. Let M ⊆ B(H) be a von Neumann algebra and ω a positive linear functional on M .
Then the following are equivalent:

(i) ω is normal.
(ii) ω is ultraweakly continuous.
(iii) There exists a sequence (ξn)n≥1 of H satisfying

∑∞
n=1 ‖ξn‖2 <∞ such that

ω(T ) =

∞∑
n=1

〈Tξn, ξn〉, T ∈M .

Moreover, every ultraweakly continuous linear functional on M is a linear combination of four normal
states and

Mn = M∗.

Proof. If ω is a (not necessarily positive) ultraweakly continuous linear functional, then ω is obviously
normal by Proposition 2.1, since strong operator limits are also weak operator limits; hence M∗ ⊆Mn

and (ii) implies (i). (iii) clearly implies (ii) by Proposition 2.12.

Assume now that ω is a normal state. By Lemma 2.37 there is a family (Pi)i∈I of non-zero mutually
orthogonal projections in M with

∑
i∈I Pi = 1H such that Pi · ω is weakly continuous for all i ∈ I.

For �nite subsets F ⊆ I, let PF =
∑
i∈F Pi. Then for T ∈ (M )1, we have T ∗T ∈ (M )1 as well, so for

any �nite subset F ⊆ I we �nd that

|ω(T (1H − PF ))| ≤ ω(T ∗(1H − PF )T )1/2ω(1H − PF )1/2 ≤ ω(T ∗T )1/2ω(1H − PF )1/2 ≤ ω(1H − PF )1/2.

Therefore ‖ω−PF ·ω‖ ≤ ω(1H−PF )1/2. As ω is normal we see that ω(PF )→ ω(1H) or ω(1H−PF )→ 0.
Hence ω is the norm-limit of the weakly and therefore ultraweakly continuous functionals PF · ω, so
ω is ultraweakly continuous. Since (i)⇒ (ii) then holds for states, it follows for any positive linear
functional as well.

De�ning the map ∆: M → B(HN) by ∆(T )(ξn)n≥1 = (Tξn)n≥1 for T ∈M and (ξn)n≥1 ∈ HN, then
it is clear with help from Lemma 2.28 that ∆(M ) is a unital ∗-subalgebra of B(HN). Now, if ω is
positive and ultraweakly continuous, then ω is of the form

ω(T ) =

∞∑
n=1

〈Tξn, ηn〉 = 〈∆(T )ξ, η〉

for elements ξ = (ξn)n≥1 and η = (ηn)n≥1 in HN. If ∆(T ) is positive for some T ∈M , then for ζ ∈ H,
de�ne ζ1 = ζ and ζn = 0 for n ≥ 2. Then 〈Tζ, ζ〉 = 〈∆(T )(ζn)n≥1, (ζn)n≥1〉 ≥ 0, so T is positive and

〈∆(T )ξ, η〉 = ω(T ) ≥ 0.

Therefore, by Corollary 2.39, we �nd ζ = (ζn)n≥1 ∈ HN such that

ω(T ) = 〈∆(T )ξ, η〉 = 〈∆(T )ζ, ζ〉 =

∞∑
n=1

〈Tζn, ζn〉.

Hence we obtain (iii) from (ii). Since

4〈Tξ, η〉 =

3∑
n=0

in〈T (ξ + inη), ξ + inη〉

for all ξ, η ∈ H and T ∈ B(H), any ultraweakly continuous linear functional on M is a �nite linear
combination of four normal positive linear functionals; by scaling, each of the positive functionals can
be assumed to be a state.

Finally, if ω ∈Mn is Hermitian, it follows from Lemma 2.36 that ω decomposes into normal positive
linear functionals, so ω ∈M∗ since each of these is then ultraweakly continuous. Finally, if ω ∈Mn,
then ω1 = 1

2 (ω + ω∗) and ω2 = 1
2i (ω − ω∗) are Hermitian and normal by Lemma 2.36 and hence

ultraweakly continuous. Therefore ω = ω1 + iω2 is ultraweakly continuous, so Mn = M∗.



2.7. NORMAL LINEAR FUNCTIONALS 51

The above theorem is the reason why we will completely obliviate the notation Mn (M∗ looks nicer
anyway). It is also the reason that normality of a linear functional is oftentimes de�ned as continuity
with respect to the ultraweak operator topology. In this project however, we will stick to the fact that
M∗ consists of all ultraweakly continuous linear functionals on M and keep the above theorem in mind
throughout; hence, whenever a linear functional on M is normal, it belongs to M∗, and vice versa.

We might as well keep proving nice things about ultraweakly continuous linear functionals. Just like
the polar decomposition yields that any operator T in a von Neumann algebra M decomposes into
the product of a partial isometry and a positive operator, both contained in M [31, Theorem 18.9], we
are about to prove that any ω ∈M∗ decomposes in a similar way. It still requires some preparation,
but not a lot.

Lemma 2.41. Let A be a C∗-algebra and ϕ ∈ A∗. If there exists a ∈ A+ with ‖a‖ ≤ 1 such that
ϕ(a) = ‖ϕ‖, then ϕ is positive. For any C∗-subalgebra B of A and any positive linear functional
ψ ∈ B∗, there exists a positive linear functional ϕ ∈ A∗ such that ϕ|B = ψ and ‖ϕ‖ = ‖ψ‖.

Proof. Assume �rst that A is unital. For any θ ∈ R and λ ∈ σ(a), we have

|(1− eiθ)λ+ eiθ| = |λ+ eiθ(1− λ)| ≤ |λ|+ |1− λ| = 1,

so we have σ(a + eiθ(1A − a)) = (1 − eiθ)σ(a) + eiθ ⊆ (C)1, whereupon ‖a + eiθ(1A − a)‖ ≤ 1 for all
θ ∈ R. Choosing θ ∈ R such that eiθϕ(1A − a) ≥ 0, we then have

‖ϕ‖ = ϕ(a) ≤ ϕ(a) + eiθϕ(1A − a) = ϕ(a+ eiθ(1A − a)) ≤ ‖ϕ‖

, so ϕ(1A − a) = 0. Therefore, ϕ(1A) = ϕ(a) = ‖ϕ‖, so ϕ is positive by [31, Theorem 13.5].

If A is not unital and ϕ ∈ A∗, then the Hahn-Banach extension ϕ̃ of ϕ to the unitization Ã satis�es
the condition for the unital C∗-algebra Ã, so by virtue of what we have just proved, ϕ̃ is positive,
implying that ϕ is positive.

For the second statement, let B and ψ be as de�ned above. If B is unital, then for any Hahn-Banach
extension ϕ of ψ to A [13, Theorem 5.7], we have

ϕ(1B) = ψ(1B) = ‖ψ‖ = ‖ϕ‖

so the �rst statement yields that ϕ is positive. If B is non-unital, assume �rst that A has a unit and
and put B1 = B + C1A. Extend ψ to a linear functional Ψ: B1 → C by de�ning

Ψ(b+ λ1A) = ψ(b) + λ‖ψ‖.

As the map B̃ → A given by (b, λ) 7→ b+ λ1A is an injective ∗-homomorphism, so that B1 is a unital
C∗-algebra. Let (fα)α∈A be an approximate identity for B. Then for b ∈ B and λ ∈ C, Proposition 0.3
yields

|Ψ(b+ λ1A)| = |ψ(b) + λ‖ϕ‖| = | lim
α∈A

ψ(bfα + λfα)| ≤ ‖ψ‖ sup
α∈A
‖bfα + λ1Afα‖ ≤ ‖ψ‖‖b+ λ1A‖,

so that ‖Ψ‖ ≤ ‖ψ‖. Clearly we also have ‖Ψ‖ ≥ ‖ψ‖, so we conclude that Ψ(1A) = ‖ψ‖ = ‖Ψ‖,
proving that Ψ is positive. Letting ϕ be a Hahn-Banach extension of Ψ to A, we see that ϕ extends ψ,
that ‖ϕ‖ = ‖ψ‖ and that ϕ(1A) = Ψ(1A) = ‖Ψ‖ = ‖ϕ‖. Hence ϕ is positive. Finally if A is non-unital,
then by replacing A with its unitization Ã and B1 with the subset {(b, λ) | b ∈ B, λ ∈ C} of Ã in the
above argument, we obtain a positive linear functional ϕ on Ã with the wanted properties. Restricting
to A yields the wanted linear functional.

Lemma 2.42. Let M be a von Neumann algebra and ω ∈ M∗. Then for any T ∈ M , we have
T · ω ∈M∗.

Proof. This is obvious from Corollary 2.4 and Proposition 2.2.

Lemma 2.43. Let M ⊆ B(H) be a von Neumann algebra and let ω ∈ M∗. If a projection P ∈ M
satis�es ‖P · ω‖ = ‖ω‖, then we have P · ω = ω.
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Proof. We may assume that ω is non-zero and that ‖ω‖ = 1 by scaling. Putting Q = 1H − P , we will
show that Q · ω = 0. Assume for contradiction that Q · ω 6= 0. Then there is a T ∈ (M )1 such that
δ := (Q · ω)(T ) > 0. Since P · ω 6= 0 by assumption, then by the Hahn-Banach theorem [13, Theorem
5.8], there exists ϕ ∈ (M∗)

∗ such that ϕ(P · ω) = ‖P · ω‖ = ‖ω‖ = 1 and ‖ϕ‖ = 1. Hence by Theorem
2.7, we obtain S ∈ (M )1 such that (P · ω)(S) = ϕ(P · ω) = 1. From seeing that

‖SP + δTQ‖2 = ‖(SP + δTQ)(SP + δTQ)∗‖ = ‖SPS∗ + δ2TQT ∗‖ ≤ 1 + δ2,

we �nd ‖SP + δTQ‖ ≤ (1 + δ2)1/2 < 1 + δ2, since
√
x < x for all x > 1. However, this implies

1 + δ2 = (P · ω)(S) + δ(Q · ω)(T ) = ω(SP + δTQ) ≤ ‖ω‖‖SP + δTQ‖ < 1 + δ2,

a contradiction, so Q · ω = 0. Therefore, ω = P · ω +Q · ω = P · ω.

Now we are set.

Proposition 2.44. If M is a von Neumann algebra and ω ∈M∗, then there exists a partial isometry
U ∈M and a positive linear functional ϕ ∈M∗ such that ω = U · ϕ, ϕ = U∗ · ω and ‖ϕ‖ = ‖ω‖.

Proof. We can assume that ω is non-zero. By the Hahn-Banach theorem [13, Theorem 5.8], there
exists ψ ∈ (M∗)

∗ such that ‖ψ‖ = 1 and ψ(ω) = ‖ω‖. By Theorem 2.7, there exists S ∈ (M )1 such
that ω(S) = ‖ω‖. Let S∗ = U |S∗| be the polar decomposition of S∗. Then

‖ω‖ = ω(S) = ω(|S∗|U∗) = (U∗ · ω)(|S∗|).

De�ne ϕ = U∗ · ω. Since ‖SS∗‖2 ≤ 1, then |S∗| has norm less than or equal to 1; since

‖ϕ‖ ≤ ‖U∗‖‖ω‖ ≤ ‖ω‖ = ϕ(|S∗|) ≤ ‖ϕ‖,

we have ‖ϕ‖ = ϕ(|S∗|), so by Lemma 2.41, ϕ is positive. By [31, Theorem 18.9] we have that U ∈M ,
so P = UU∗ is a projection contained in M . Note that U · ϕ = (UU∗) · ω = P · ω and

(SP )∗ = P ∗S∗ = UU∗S∗ = UU∗U |S∗| = U |S∗| = S∗,

so that SP = S. Therefore

‖P · ω‖ ≤ ‖ω‖ = ω(S) = ω(SP ) = (P · ω)(S) ≤ ‖P · ω‖,

so P · ω = ω by Lemma 2.43, and hence ω = U · ϕ. Finally, ‖ω‖ ≤ ‖U‖‖ϕ‖ ≤ ‖U∗‖‖ω‖ ≤ ‖ω‖, as
‖U‖ = ‖U‖ ≤ 1, so ‖ϕ‖ = ‖ω‖.

The above expression of an ultraweakly continuous linear functional is called its polar decomposition.

2.8 Normal linear maps

One might have noticed that the de�nition of normality did not strictly depend on the fact that the map
in question mapped into C; as it is equally possible to taking supremums in von Neumann algebras,
there might be a possibility of generalizing. (Of course there is.) This section requires some of the
de�nitions encountered in Chapter 3, so if you, kind reader, are not familiar with the concept of a
positive linear map, skip ahead to page 67 and spend 10 seconds reading the relevant de�nitions and
the statement that positive maps on C∗-algebras are Hermitian (do not continue reading from there,
since this chapter is still extremely relevant!). Here goes.

De�nition 2.10. Let M and N be von Neumann algebras and let ϕ : M → N be a bounded positive
linear map. ϕ is then called normal if it holds for any bounded increasing net (Tα)α∈A of self-adjoint
operators in M that

ϕ

(
sup
α∈A

Tα

)
= sup
α∈A

ϕ(Tα).

One might expect that the above notion of normality has a connection to the one for linear functionals,
and as it turns out that tout est vraiment beau.

Proposition 2.45. Let M and N be von Neumann algebras and let ϕ : M → N be a bounded positive
linear map. Then ϕ is normal if and only if ω ◦ ϕ ∈M∗ for all ω ∈ N∗.
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Proof. Let (Tα)α∈A be a bounded increasing net of self-adjoint operators in M with T = supα∈A Tα.
If ϕ is normal, then because ϕ(T ) = supα∈A ϕ(Tα), we have ω(ϕ(Tα)) → ω(ϕ(T )) for all ω ∈ N∗.
Thus ω ◦ ϕ ∈M∗ for all ω ∈ N∗ by Theorem 2.40. On the other hand, if ω(ϕ(Tα))→ ω(ϕ(T )) for all
ω ∈ N∗, then ϕ(Tα)→ ϕ(T ) ultraweakly and hence weakly. Since ϕ is positive, (ϕ(Tα))α∈A converges
weakly to S = supα∈A ϕ(Tα), but then S = ϕ(T ). Hence ϕ is normal.

Corollary 2.46. Let M and N be von Neumann algebras and let ϕ : M → N be a bounded positive
linear map. Then ϕ is normal if and only if ϕ is ultraweakly-to-ultraweakly (or ultrastrongly-to-ultra�
strongly) continuous.

Proof. This is an immediate consequence of the preceding proposition.

It is normal (pun intended) that ultraweakly-to-ultraweakly continuous positive linear maps are called
normal, and the above corollary is the reason why. We will adopt this convention throughout the
project, so that normal maps of von Neumann algebras are the ultraweakly-to-ultraweakly continuous
ones, also satisfying De�nition 2.10.

The next two theorems are so useful that it hurts.

Theorem 2.47. Let M be a von Neumann algebra and let π : M → B(H) be a normal unital repre�
sentation. Then π(M ) is a von Neumann algebra.

Proof. We have that (M )1 is ultraweakly compact by Corollary 2.9. As (π(M ))1 = π((M )1) by
Proposition 2.61 and π is normal, then (π(M ))1 is ultraweakly compact and hence ultraweakly closed.
Since 1H ∈ π(M ), it follows from von Neumann's bicommutant theorem (Theorem 2.30) that π(M )
is a von Neumann algebra.

Proposition 2.48. Let M and N be von Neumann algebras and let π : M → N be a ∗-isomorphism.
Then π is a homeomorphism of the ultraweak and ultrastrong topologies on M and N .

Proof. As can be easily checked, π and π−1 are normal ∗-homomorphisms.

The last one in particular is just amazing; who would expect that a ∗-isomorphism, a strictly algebraic
notion, is automatically ultraweakly-to-ultraweakly continuous?

Next follows a couple of examples of normal maps.

Proposition 2.49. Let M be a von Neumann algebra and let ϕ ∈ S(M ) be a state. Let (H, π, ξ) be
its associated GNS triple (see page viii). If ϕ is normal, then π is normal and π(M ) is a von Neumann
algebra.

Proof. Let π∗ : B(H)∗ →M ∗ be the dual mapping of π. For each R, S and T in M we have

π∗(ωπ(R)ξ,π(S)ξ)(T ) = 〈π(T )π(R)ξ, π(S)ξ〉 = 〈π(S∗TR)ξ, ξ〉 = ϕ(S∗TR) = (R · ϕ · S∗)(T ).

Hence π∗(ωπ(R)ξ,π(S)ξ) = R · ϕ · S ∈ M∗ by Lemma 2.36 since ϕ is normal. Let η ∈ H, S ∈ M and
ε > 0. As π(M )ξ is dense in H, we can pick R ∈M such that ‖π(R)ξ − η‖ < ε. Then as

‖π∗(ωη,π(S)ξ)− π∗(ωπ(R)ξ,π(S)ξ)‖ ≤ ‖η − π(R)ξ‖‖π(S)ξ‖ < ε‖π(S)ξ‖,

we see that π∗(ωη,π(S)ξ) is contained in the norm closure of M∗ and hence in M∗. In a similar way, one
proves that π∗(ωη,χ) ∈M∗ for all η, χ ∈ H, so π∗ maps all �nite linear combinations of ωη,χ into M∗.
For any ω ∈ B(H)∗, we have by Proposition 2.2 and Corollary 2.4 that ω =

∑∞
n=1 ωηn,χn , converging

in norm, for square-summable sequences (ηn)n≥1 and (χn)n≥1 in H where the series converges in norm.
Because ∥∥∥∥∥π∗(ω)− π∗

(
N∑
n=1

ωηn,χn

)∥∥∥∥∥ ≤
∥∥∥∥∥
∞∑

n=N+1

ωηn,χn

∥∥∥∥∥ ≤
∞∑

n=N+1

‖ηn‖‖χn‖ → 0

for N →∞, we see that ω ◦ π = π∗(ω) ∈M∗. By Proposition 2.45, π is normal and hence π(M ) is a
von Neumann algebra by Proposition 2.47.
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Proposition 2.50. Let H and K be Hilbert spaces and let M ⊆ B(H) and N ⊆ B(K) be von
Neumann algebras. The maps π : M → B(H ⊗ K) and ρ : N → B(H ⊗ K) given by π(T ) = T ⊗ 1K
and ρ(S) = 1H ⊗ T are normal ∗-homomorphisms.

Proof. As π : M → M ⊗ C1K and ρ : N → C1H ⊗ N are ∗-isomorphisms, the result follows from
Proposition 2.48.

Corollary 2.51. Let M ⊆ B(H) be a von Neumann algebra and let I be a non-empty set. The map
∆: M →

⊕
i∈I M given by ∆(T )(ξi)i∈I = (Tξi)i∈I for T ∈M is normal.

Proof. Let K = `2(I) with orthonormal basis {δi | i ∈ I} and de�ne U : HI → H⊗K by

U(ξi)i∈I =
∑
i∈I

ξi ⊗ δi.

We saw in Section 1.3 that U was an isometric isomorphism. Assume that Tα → T ultraweakly in M .
Proposition 2.50 now yields that Tα ⊗ 1K → T ⊗ 1K ultraweakly. As the map H ⊗ K → HI given by
S → U−1SU is an ultraweak-to-ultraweak homeomorphism, the proof of Proposition 1.33(i) now tells
us that ∆(Tα)→ ∆(T ) ultraweakly.

Proposition 2.52. Let (Mi)i∈I be a family of von Neumann algebras with Mi ⊆ B(Hi) for each
i ∈ I and let M =

⊕
i∈I Mi. For any i0 ∈ I, let ϑi0 : Mi0 →M and θi0 : M →Mi0 be the inclusion

and projection respectively. Then ϑi0 and θi0 are normal ∗-homomorphisms. Similarly, if J ⊆ I and
ϑJ :

⊕
i∈J Mi →M and θJ : M →

⊕
i∈J Mi are the inclusions and projections respectively, then ϑJ

and θJ are normal homomorphisms.

Proof. It is easy to see that the maps in question are ∗-homomorphisms. Assume that Sα → S
ultraweakly in Mi0 and Tα → T ultraweakly in M . For any square-summable sequences ξ = (ξn)n≥1

and η = (ηn)n≥1 in
⊕

i∈I Hi, let ξ′n and η′n be the i0'th coordinate of ξn and ηn for all n ≥ 1, and note
that (ξ′n)n≥1 and (η′n)n≥1 are square-summable. Hence

∞∑
n=1

〈ϑ(Sα)− ϑ(S))ξn, ηn〉 =

∞∑
n=1

〈(Sα − S)ξ′n, η
′
n〉 → 0,

so that ϑ(Sα)→ ϑ(S) ultraweakly. That the other maps are normal is shown in a similar manner.

The next result combines some earlier results along with some new ones into a neat statement about
normal ∗-epimorphisms.

Proposition 2.53. Let M and N be von Neumann algebras and let ϕ : M → N be a normal
surjective ∗-homomorphism. Then there exists a central projection P ∈ M such that kerϕ ∼= MP ,
N ∼= M1M−P and

M ∼= MP ⊕M1M−P .

Proof. kerϕ is an ultraweakly closed, two-sided ideal in M . Hence by Proposition 2.32 there exists a
central projection P ∈M such that kerϕ = MP , so kerϕ is isomorphic to MP by Proposition 2.17.
Moreover, the ∗-subalgebra M (1M − P ) is ∗-isomorphic to N : the map ϕ̃ : M (1M − P )→ N given
by ϕ̃(T (1M −P )) = ϕ(T (1M −P )) = ϕ(T ) is clearly a surjective ∗-homomorphism, and it is injective:
indeed, if ϕ(T ) = 0 for some T ∈M (1M −P ), then T ∈ kerϕ and hence T = SP for some S ∈M . As
T (1M − P ) = T , we have T = SP = TP = T (1H − P )P = 0. Therefore N is isomorphic to M1M−P
by Proposition 2.17, so M = MP ⊕M1M−P by Proposition 2.19.

Regrettably, the next theorem is stated without proof; however, a thorough proof would kill the
momentum of the chapter as it would require some results about Hilbert space tensor products that
obviously hold, but nonetheless would take quite a bit of time to prove. The statement of the theorem
is a little convoluted in itself though, so hopefully the reader will not miss a proof too much.

Theorem 2.54. Let M ⊆ B(H) and N ⊆ B(K) be von Neumann algebras. If π : M → N is a
normal surjective ∗-homomorphism, then there exists a Hilbert space L, a projection Q ∈ M ′⊗B(L)
and an isometric isomorphism U : Q(H⊗L)→ K such that

π(T ) = U
[
Q(T ⊗ 1L)|Q(H⊗L)

]
U−1.
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Proof. Omitted. See [24, Theorem IV.5.5].

The only reason we need the above result is the following corollary which we will come back to in a
few chapters.

Corollary 2.55. Let M ⊆ B(H) be a von Neumann algebra, and let P ∈ M be a projection with
central support CP = 1H. Then M is isomorphic to a reduced von Neumann algebra of MP ⊗B(K)
for some Hilbert space K.

Proof. By Proposition 2.18, there exists a ∗-isomorphism ϕ : (M )′P →M ′. By Proposition 2.48, ϕ is
normal, so Theorem 2.54 yields the existence of a Hilbert space K, a projection

Q ∈ ((M )′P )′⊗B(K) = MP ⊗B(K) ⊆ B(P (H)⊗K)

and an isometric isomorphism U : Q(P (H)⊗K)→ H such that

ϕ(T ) = U(Q(T ⊗ 1K)|Q(P (H)⊗K))U
−1.

Hence
M ′ = U((MP )′ ⊗ C1K)QU

−1,

so M = U(MP ⊗B(K))QU
−1 by Proposition 1.29. Hence U induces a spatial isomorphism between

the von Neumann algebras M and (MP ⊗B(K))Q.

For the next chapter already, we will need a result on how we combine two normal ∗-homomorphisms
into one normal ∗-homomorphism on the von Neumann algebra tensor product. We put it here for
reference, without proof.

Proposition 2.56. Let M1, M2, N1 and N2 be von Neumann algebras and let ϕ1 : M1 → N1

and ϕ2 : M2 → N2 be normal unital ∗-homomorphisms. Then there exists a unique normal unital
∗-homomorphism ϕ : M1⊗M2 → N1⊗N2 such that

ϕ(T1 ⊗ T2) = ϕ1(T1)⊗ ϕ2(T2), T1 ∈M1, T2 ∈M2.

Proof. See [10, Proposition I.4.5.2].

2.9 The predual of a direct sum of von Neumann algebras

Since we have only now started working with ultraweakly continuous linear functionals in a more
developed manner, the next proposition has not had a place to be until now; since it does not �t in
anywhere else, we put it here; we will need it in the next chapter. For a family (Xi)i∈I of Banach
spaces, its `1-direct sum, denoted by

⊕
i∈I Xi, is the set {(xi)i∈I |xi ∈ Xi for all i ∈ I,

∑
i∈I ‖xi‖ <∞}

equipped with pointwise addition and multiplication. Under the norm (xi)i∈I 7→
∑
i∈I ‖xi‖, the direct

sum is then a Banach space itself.

Proposition 2.57. Let (Mi)i∈I be a family of von Neumann algebras with Mi ⊆ B(Hi) for some
Hilbert space Hi for all i ∈ I, and let M =

⊕
i∈I Mi. For each i ∈ I, de�ne ρi : Mi → M by

ρi(T ) = (Tj)j∈I where Tj = T for j = i and Tj = 0 for j 6= i. Then there is an isometric isomorphism
Φ: M∗ →

⊕
i∈I(Mi)∗ given by

Φ(ω) = (ωi)i∈I

where ωi = ω ◦ ρi for each i ∈ I. Under this isomorphism, then for any T = (Ti)i∈I ∈M we have

ω(T ) =
∑
i∈I

ωi(Ti).

Proof. Let ιi : Hi → H denote the injection related to the Hilbert space Hi (see page vii), and let
H =

⊕
i∈I Hi. We will �rst prove that Φ is in fact well-de�ned. For any T = (Ti)i∈I ∈ M and

ξ = (ξi)i∈I ∈ H, note that (∑
i∈I

ρi(Ti)

)
(ξi)i∈I =

∑
i∈I

ιi(Tiξi) = T (ξi)i∈I ,
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so
∑
i∈I ρi(Ti) = T where the sum is strongly and hence weakly convergent. For any �nite subset

F ⊆ I, note that∥∥∥∥∥
(∑
i∈F

ρi(Ti)

)
(ξi)i∈I

∥∥∥∥∥
2

=

∥∥∥∥∥∑
i∈F

ιi(Tiξi)

∥∥∥∥∥
2

=
∑
i∈F
‖Tiξi‖2 ≤

(
sup
i∈I
‖Ti‖

)2

‖ξ‖2,

so ‖
∑
i∈F ρi(Ti)‖ ≤ supi∈I ‖Ti‖. Hence by Proposition 2.1,

∑
i∈I ρi(Ti) = T where the sum is ultra�

weakly convergent. Letting ω ∈M∗ this immediately implies

ω(T ) = ω

(∑
i∈I

ρi(Ti)

)
=
∑
i∈I

ωi(Ti).

Therefore,

‖ω(T )‖ ≤
∑
i∈I
‖ωi‖‖Ti‖ ≤

(
sup
i∈I
‖Ti‖

)∑
i∈I
‖ωi‖ = ‖T‖

∑
i∈I
‖ωi‖.

For a �nite subset F ⊆ I, let ε > 0, let λ be the cardinality of F and take operators Ti ∈ (Mi)1 for all
i ∈ F such that 0 ≥ ωi(Ti) ≥ ‖ωi‖ − ε

λ . Since T =
∑
i∈F ρi(Ti) ∈M now satis�es ‖T‖ ≤ 1, we have∑

i∈F
‖ωi‖ ≤

∑
i∈F

ωi(Ti) + ε ≤ ω(T ) + ε ≤ ‖ω‖+ ε.

Hence
∑
i∈F ‖ωi‖ ≤ ‖ω‖ for all �nite subsets F ⊆ I, so

∑
i∈I ‖ωi‖ ≤ ‖ω‖.

If we can now prove that ω ◦ ρi ∈ (Mi)∗ for all ω ∈ M∗ and i ∈ I, we will have proved that Φ is
well-de�ned, but this is easy: assume that Tα → T ultraweakly in Mi. For any square-summable
sequences (ξn)n≥1 and (ηn)n≥1 in H with ξn = (ξni )i∈I and ηn = (ηni )i∈I , note that

∞∑
n=1

‖ξni ‖2 ≤
∞∑
n=1

∑
i∈I
‖ξni ‖2 =

∞∑
n=1

‖ξn‖2 <∞,

so that we have
∞∑
n=1

〈(ρi(Tα)− ρi(T ))ξn, ηn〉 =

∞∑
n=1

〈(Tα − T )ξni , η
n
i 〉,

whence ρi(Tα) → ρi(T ) ultraweakly. Hence ωi(Tα) → ωi(T ), so Φ is well-de�ned. Φ is also clearly
linear, and on the grounds of what we have proved, we can also conclude that Φ is an isometry.

Finally we prove Φ is surjective. For any (ϕi)i∈I ∈
⊕

i∈I(Mi)∗, de�ne ϕ : M → C by

ϕ((Ti)i∈I) =
∑
i∈I

ϕi(Ti).

Then ϕ is clearly well-de�ned, linear and bounded. To prove that ϕ is ultraweakly continuous, let
F ⊆ I be �nite and de�ne ϕF (T ) =

∑
i∈F ϕi(Ti) for T = (Ti)i∈I ∈M . Let (Tα)α∈A be a net in (M )1

with Tα = (Tαi )i∈I for all α, let T = (Ti)i∈I ∈ (M )1 and assume that Tα → T weakly. For i ∈ I and
ξ, η ∈ Hi, note that

〈Tαi ξ, η〉 = 〈Tαιi(ξ), ιi(η)〉 → 〈Tιi(ξ), ιi(η)〉 = 〈Tiξ, η〉,

so Tαi → Ti weakly for all i ∈ I. As ϕi is weakly continuous on (Mi)1 by Corollary 2.12, we have
ϕi(T

α
i ) → ϕi(Ti) for all i ∈ I. Hence ϕF (Tα) → ϕF (T ), so ϕF ∈ M∗. For ε > 0, let T = (Ti)i∈I ∈

(M )1 and choose a �nite subset F ⊆ I such that
∑
i/∈F ‖ϕi‖ < ε. Then

‖ϕ(T )− ϕF (T )‖ ≤

∥∥∥∥∥∑
i/∈F

ϕi(Ti)

∥∥∥∥∥ ≤∑
i/∈F

‖ϕi(Ti)‖ ≤
∑
i/∈F

‖ϕi‖ < ε,

so ‖ϕ − ϕF ‖ < ε. Hence ϕF → ϕ in norm, so since M∗ is norm-closed by Theorem 2.7, we have
ϕ ∈M∗. Finally, it is clear that Φ(ϕ) = (ϕi)i∈I , so Φ is an isometric isomorphism.
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2.10 Intermezzo 3: σ-�nite von Neumann algebras

As promised, this intermezzo will use the knowledge of the two previous intermezzos along with some
ideas from the subsequent couple of sections.

De�nition 2.11. A von Neumann algebra M is said to be σ-�nite or countably decomposable if every
family of non-zero pairwise orthogonal projections of M is countable.

The notion of σ-�niteness will be irrelevant for the moment, but will return with great vengeance
in Chapter 5 because of a result proved in this section. The result itself requires us to know about
equivalent conditions to σ-�niteness for von Neumann algebras which we will investigate immediately:

Proposition 2.58. Let M ⊆ B(H) be a von Neumann algebra. Then the following are equivalent:

(i) M is σ-�nite.
(ii) There exists a countable family of separating vectors for M .
(iii) There exists a faithful normal state on M .
(iv) M is ∗-isomorphic to a von Neumann algebra N ⊆ B(K) admitting a separating and cyclic unit

vector.

Proof. (i)⇒ (ii): Let (ξα)α∈A be a maximal family of non-zero vectors in H such that the subspaces
[M ′ξα] and [M ′ξβ ] are pairwise orthogonal for α 6= β. Let Pα be the projection onto [M ′ξα] for all
α ∈ A. Assuming that P =

∑
α∈A Pα < 1H, then there exists a non-zero ξ ∈ H such that Pαξ = 0 for

all α ∈ A. For α ∈ A and any T ∈M ′, we have T ∗[M ′ξα] ⊆ [M ′ξα], so

〈Tξ, η〉 = 〈ξ, T ∗η〉 = 〈Pαξ, T ∗η〉 = 0

for all η ∈ [M ′ξα], so [M ′ξ] and [M ′ξα] are orthogonal subspaces for all α ∈ A, contradicting maxi�
mality. Hence ∑

α∈A
Pα = 1H.

Hence for ξ ∈ H and ε > 0, there exists a �nite subset F ⊆ A such that ‖ξ−
∑
α∈F Pαξ‖ <

ε
2 . Letting

λ be the cardinality of F and choosing Tα ∈ M ′ such that ‖Tαξα − Pαξ‖ < ε
2λ for α ∈ F , it follows

that ∥∥∥∥∥ξ −∑
α∈F

Tαξα

∥∥∥∥∥ ≤
∥∥∥∥∥ξ −∑

α∈F
Pαξ

∥∥∥∥∥+
∑
α∈F
‖Tαξα − Pαξ‖ < ε,

so (ξα)α∈A is a set of cyclic vectors for M ′. By Proposition 2.21, (ξα)α∈A is a separating set for M .
By σ-�niteness, A is countable.

(ii)⇒ (iii): Let (ξn)n≥1 be a sequence of separating vectors for M . By scaling, we can assume that∑∞
n=1 ‖ξn‖2 = 1. De�ne ω : M → C by

ω(T ) =

∞∑
n=1

〈Tξn, ξn〉.

ω is then a normal state, and moreover if ω(T ∗T ) = 0 for T ∈ M , then ‖Tξn‖2 = 0 for all n ≥ 1,
implying T = 0 since the sequence (ξn)n≥1 was separating.

(iii)⇒ (iv): Let ω be a faithful normal state on M , and let (Hω, πω, ξω) be the corresponding GNS
triple where πω maps M into B(Hω). Then by Proposition 2.49, πω(M ) is a von Neumann algebra
and ξω is a cyclic vector for πω(M ) by construction. Moreover, πω is injective because ω is faithful,
so M ∼= πω(M ). If πω(T )ξω = 0 for T ∈M , then ω(T ∗T ) = 〈πω(T ∗T )ξω, ξω〉 = ‖πω(T )ξω‖2 = 0, so
T = 0 by faithfulness of ω, implying that ξω is separating for πω(M ) as well.

(iv)⇒ (i): Let π : M → N be the ∗-isomorphism connecting M to N , let ξ ∈ K be the separating
(and cyclic vector) for N , and let (Pα)α∈A be a family of mutually orthogonal projections in M .
Put P =

∑
α∈A Pα. Then (π(Pα))α∈A is a family of mutually orthogonal projections in N and

π(P ) =
∑
α∈A π(Pα) where the sum is strong operator convergent. Therefore∑

α∈A
‖π(Pα)ξ‖2 = ‖π(P )ξ‖2 <∞
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by [31, Corollary 17.4], so π(Pα)ξ is non-zero for only countably many α ∈ A. Since ξ is separating,
π(Pα) and hence Pα is non-zero for only countably many α ∈ A, so M is σ-�nite.

Because of its encompassingness, the next result is wonderfully surprising and surprisingly wonderful.

Proposition 2.59. Let M ⊆ B(H) be a von Neumann algebra. Then

M ∼=
⊕
α∈A

Mα

where Mα is ∗-isomorphic to a reduced von Neumann algebra of MPα ⊗B(Kα), Kα being a suitable
Hilbert space and Pα is a projection in M such that MPα ⊆ B(Pα(H)) has a separating vector.
Moreover, each MPα is σ-�nite.

Proof. Let ξ ∈ H and let P be the projection onto [M ′ξ]. Then by Lemma 2.14, P ∈ M . For
η ∈ [M ′ξ], there exists T ∈M ′ such that ‖Tξ − η‖ < ε, and hence ‖PT |P (H)ξ − η‖ < ε, proving that
ξ is a cyclic vector for the von Neumann algebra (M ′)P ⊆ B(P (H)) and hence a separating vector for
((M ′)P )′ = MP by Propositions 2.17 and 2.21.

Let CP denote the central support of a projection P ∈ M . Choose a maximal family (ξα)α∈A of
non-zero vectors in H such that CPα and CPα′ are orthogonal for α 6= α′, where Pα is the projection
onto [M ′ξα] for α ∈ A. Assume that

∑
α∈A CPα < 1H. Then there exists a non-zero vector in H such

that CPαξ = 0 for all α ∈ A. Letting P denote the orthogonal projection onto [M ′ξ], then for η ∈ H
and T ∈M ′, we have

〈Tξ, CPαη〉 = 〈CPαξ, T ∗η〉 = 0

for all α ∈ A, so CPα and P are orthogonal for all α ∈ A. Hence CPα and CP are orthogonal for all
α ∈ A, contradicting maximality.

Hence
∑
α∈A CPα = 1H, so

M ∼=
⊕
α∈A

MCPα

by Proposition 2.19. Now CPαPα|CPα (H) = Pα|CPα (H) is a projection in MCPα
whose central support

in MCPα
is equal to the identity operator on CPα(H); indeed, this follows just by considering what the

central support really is (see De�nition 2.5). Corollary 2.55 then tells us that MCPα
is isomorphic to

a reduced von Neumann algebra of MPα ⊗B(Kα) for some Hilbert space Kα.

Finally MPα has a separating vector ξα by construction seen in the �rst paragraph of the proof, so by
Proposition 2.58, MPα is σ-�nite.

2.11 The universal enveloping von Neumann algebra

So far this chapter might have seemed more like a �take-your-daughter-to-work day� thing than a
development of a single idea, say, the ultraweak topology. True, the digressions throughout we have
made have been necessary but nonetheless, reading through the preceding 10 sections has probably
not been the smoothest ride. We will make up for this by developing a concept, using a lot of the
concepts developed and theorems proved throughout the chapter, and the results will be of great use
for the remaining three chapters.

Knowing now that von Neumann algebras are really rigid concerning the various operator topologies
and that one of them, namely the ultraweak topology, has a lot in common with the weak∗ topology,
we can pass on to a very important application of what we have been proving up until now. It turns
out that a lot of theorems for C∗-algebras need only be checked for von Neumann algebras because of
a very special embedding of a C∗-algebra into a von Neumann algebra that we will be working towards
�nding from here onward. One might then consider that there could be a lot of von Neumann algebras
allowing for such an embedding, and therefore it would be the best thing to �nd a von Neumann
algebra that is possible to derive directly from the original C∗-algebra, without any reference to a
speci�c Hilbert space. That is exactly what we will do: our speci�c von Neumann algebra will have
the structure of a dual space related to the C∗-algebra.

To commence our search, we bring in another de�nition.
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De�nition 2.12. Let A be a C∗-algebra and let π : A → B(H) be a representation of A on a Hilbert
space H. Then π is said to be nondegenerate if π(A) is nondegenerate. If π is nondegenerate, then π
is called universal if it satis�es the following property: Given any other nondegenerate representation
ρ of A on a Hilbert space K, there exists a normal ∗-homomorphism ρ0 of π(A)′′ onto ρ(A)′′ such that
ρ = ρ0 ◦ π, i.e. such that the diagram

A π //

ρ
!!DD

DD
DD

DD
D π(A)′′

ρ0zz
ρ(A)′′

commutes.

Note that the requirement above that ρ = ρ0 ◦ π and that ρ0 is normal implies that ρ0 is actually a
∗-homomorphism; this follows since π(A) is ultraweakly dense in π(A)′′ by the von Neumann density
theorem. For instance, multiplicativity follows from letting x, y ∈ π(A)′′, whereupon there exist nets
(xα)α∈A and (yβ)β∈B such that π(xα)→ x and π(yβ)→ y ultraweakly. Hence

ρ0(xy) = lim
α∈A

lim
β∈B

ρ0(π(xα)π(yβ)) = lim
α∈A

lim
β∈B

ρ0(π(xαyβ))

= lim
α∈A

lim
β∈B

ρ(xαyβ) = lim
α∈A

ρ(xα) lim
β∈B

ρ(yβ)

= lim
α∈A

ρ0(π(xα)) lim
β∈B

ρ0(π(yβ)) = ρ0(x)ρ0(y),

as left and right multiplication are ultraweakly continuous operations.

The notion of a representation of course allows us to embed A in a von Neumann algebra, namely the
von Neumann algebra generated by the image of the representation. Requiring that a representation
be universal yields that this von Neumann algebra is essentially unique. Indeed, if π1 : A → B(H1) and
π2 : A → B(H2) are universal representations of A, there exist normal ∗-homomorphisms ρ1 : π1(A)′′ →
π2(A)′′ and ρ2 : π2(A)′′ → π1(A)′′ such that π2 = ρ1 ◦ π1 and π1 = ρ2 ◦ π2. Hence

ρ2 ◦ ρ1 ◦ π1 = ρ2 ◦ π2 = π1, ρ1 ◦ ρ2 ◦ π2 = ρ1 ◦ π1 = π2,

so ρ2 ◦ ρ1 and ρ1 ◦ ρ2 are the identity maps on π1(A) and π2(A) respectively. Because they are also
normal, they are the identity maps on π1(A)′′ and π2(A)′′. Hence ρ1 and ρ2 are isomorphisms and
inverses of each other, and π1(A)′′ and π2(A)′′ are isomorphic von Neumann algebras. Thus for a
universal representation π : A → B(H), we may speak of the (universal) enveloping von Neumann
algebra π(A)′′ of A; it is unique up to isomorphism.

We now aim at proving that the universal enveloping von Neumann algebra is related to A in a
very non-obvious way that nonetheless is very delicate. One might of course inquire �rst whether a
C∗-algebra even has a universal representation. The GNS representation comes to our aid: for every
ϕ ∈ S(A), let (πϕ,Hϕ, ξϕ) denote the GNS triple corresponding to ϕ. Let H =

⊕
ϕ∈S(A)Hϕ and let

π =
⊕

ϕ∈S(A)

πϕ : A → B(H),

i.e.
π(x)(ηϕ)ϕ∈S(A) = (πϕ(x)ηϕ)ϕ∈S(A), x ∈ A, (ηϕ)ϕ∈S(A) ∈ H.

Then we have shown that π is a faithful representation of A (see page viii). π is also nondegenerate;
if A is unital, then this is clear as π(1A) = 1H. If A is non-unital, then there exists an approximate
identity (eα)α∈A of A that satis�es π(eα)η → η for all η ∈ H by Proposition 0.5. Hence η ∈ [π(A)H]
for all η ∈ H, so π is nondegenerate.

Before going any further, we will prove an essential fact about ∗-homomorphisms of C∗-algebras. The
proof below does not require the C∗-algebras to be unital; the continuous functional calculus is involved,
but its use revolves around a function that maps 0 to 0 and hence can be approximated by a polynomial
with no constant term.
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Proposition 2.60. Let A and B be C∗-algebras and let ϕ : A → B be a ∗-homomorphism. Then:

(i) If b ∈ ϕ(A) and b ∈ Bsa, then there exists a ∈ Asa such that ϕ(a) = b and ‖a‖ = ‖b‖.
(ii) If b ∈ ϕ(A), then there exists a ∈ A such that ϕ(a) = b and ‖a‖ = ‖b‖.

Proof. (i) Take x ∈ A such that ϕ(x) = b and set y = 1
2 (x+ x∗). Then y ∈ Asa and ϕ(y) = b. De�ne

a function f : R→ R by

f(x) =

 −‖b‖ x ≤ −‖b‖
x −‖b‖ ≤ x ≤ ‖b‖
‖b‖ x ≥ ‖b‖.

Then f is continuous and f(b) = b. Putting a = f(y), then a ∈ Asa, ‖a‖ ≤ ‖b‖ and

ϕ(a) = ϕ(f(y)) = f(ϕ(y)) = f(b) = b.

As ϕ is contractive, it also follows that ‖b‖ ≤ ‖a‖, and hence we are done.

(ii) Take x ∈ A such that ϕ(x) = b. De�ne b̃ ∈M2(B) by

b̃ =

(
0 b∗

b 0

)
.

Then b̃ = b̃∗ and ‖b̃‖ = ‖b‖. As ϕ(2) : M2(A)→M2(B) is a ∗-homomorphism, and

ϕ(2)

(
0 x∗

x 0

)
= b,

it follows from (i) that there exists ã ∈M2(A)sa such that ϕ(2)(ã) = b̃ and ‖ã‖ = ‖b̃‖. Write

ã =

(
? ?
a ?

)
,

so that ϕ(a) = b and ‖a‖ ≤ ‖ã‖ = ‖b̃‖ = ‖b‖. As ∗-homomorphisms are contractive, it follows that
‖b‖ ≤ ‖a‖ as well, and this proves the statement.

Corollary 2.61. Let A and B be C∗-algebras and let ϕ : A → B be a ∗-homomorphism. Then for all
r > 0, ϕ((A)r) = (ϕ(A))r.

Proof. If a ∈ A with ‖a‖ ≤ r, then ‖ϕ(a)‖ ≤ ‖a‖ ≤ r, so ϕ((A)r) ⊆ (ϕ(A))r. On the other hand, for
b ∈ ϕ(A) with ‖b‖ ≤ r, then by Proposition 2.60 there exists a ∈ A with ϕ(a) = b and ‖a‖ ≤ r. Hence
(ϕ(A))r ⊆ ϕ((A)r).

If ϕ : A → B is a bounded linear map of normed spaces, then its dual mapping ϕ∗ : B∗ → A∗ or the
adjoint map of ϕ is given by

ϕ∗(ψ) = ψ ◦ ϕ.
ϕ∗ is linear and bounded by ‖ϕ‖ and is weak∗-to-weak∗ continuous. Indeed, if ψα → ψ in the weak∗

topology in B∗, then for all x ∈ A,

ϕ∗(ψα)(x) = ψα(ϕ(x))→ ψ(ϕ(x)) = ϕ∗(ψ)(x),

so ϕ∗(ψα) → ϕ∗(ψ) in the weak∗ topology in A∗. Moreover, for bounded linear maps ϕ : A → B and
ψ : B → C, then (ϕ ◦ ψ)∗ = ψ∗ ◦ ϕ∗. In particular, if a bounded linear map ϕ : A → B is bijective
and the inverse ϕ−1 : B → A is bounded, then ϕ∗ is bijective as well with (ϕ∗)−1 = (ϕ−1)∗; note that
if A and B are Banach spaces, then boundedness of the inverse ϕ−1 follows from the Open Mapping
Theorem [13, Theorem 5.10].

Theorem 2.62. Let A be a C∗-algebra and π : A → B(H) be a representation of A. Let M denote
the von Neumann algebra π(A)′′. Then there is a unique weak∗-to-ultraweakly continuous linear map
π̃ : A∗∗ →M such that the diagram

A π //

ι
!!CC

CC
CC

CC
M

A∗∗
!π̃

<<

commutes, where ι : A → A∗∗ denotes the natural inclusion. Moreover, π̃ maps the closed unit ball of
A∗∗ onto the closed unit ball of M and is therefore a surjection.
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Proof. Let Ω denote the restriction of the adjoint linear map π∗ : M ∗ → A∗ to the predual Banach
space M∗ ⊆ M ∗ of M ., i.e. Ω = π∗|M∗ . Taking the adjoint of Ω yields a linear map Ω∗ : A∗∗ →
(M∗)

∗; by composing with the inverse of the isometric isomorphism Λ: M → (M∗)
∗, we obtain a map

Λ−1 ◦Ω∗ : A∗∗ →M . We claim that this is the wanted π̃. First and foremost, it does extend π to A∗∗,
as π̃ ◦ ι = π: indeed for all a ∈ A and ω ∈M∗ we have

(Ω∗(ι(a))(ω) = ι(a)(Ω(ω)) = Ω(ω)(a) = ω(π(a)) = Λ(π(a))(ω),

so π̃◦ ι = Λ−1 ◦Ω∗ ◦ ι = π. As adjoints of bounded linear maps are weak∗-to-weak∗ continuous and Λ−1

is weak∗-to-ultraweakly continuous, it also follows that π̃ is weak∗-to-ultraweakly continuous. Because
ι(A) is weak∗-dense in A∗∗ by Goldstine's theorem [29, Theorem II.A.13], it follows that π̃ is the only
weak∗-to-ultraweakly continuous extension making the above diagram commute.

Finally, let S = π̃((A∗∗)1). We claim that S = (M )1. Note that (ι(A))1 is the weak∗ closure of
(A∗∗)1 by Goldstine's theorem, and that π̃((ι(A))1) = π((A)1) = (π(A))1 since ι is an isometry and
π is a ∗-homomorphism, by using Corollary 2.61. As π̃ is weak∗-to-ultraweakly continuous, it follows
that S is contained in the ultraweak closure of π(A)1. Since the ultraweak closure of (π(A))1 is equal
to (M )1 by Kaplansky's density theorem and Proposition 2.1, it then follows that S ⊆ (M )1. For
the converse inclusion, note that

(π(A))1 = π((A)1) = π̃(ι(A))1) ⊆ π̃((A∗∗)1) = S

by Corollary 2.61. By Alaoglu's theorem [13, Theorem 5.18], (A∗∗)1 is weak∗-compact, so S is
ultraweakly compact and therefore ultraweakly closed. Hence S contains the ultraweak closure of
(π(A))1, which is (M )1 by Kaplansky's density theorem and Proposition 2.1. Therefore S = (M )1.
It clearly follows that π̃ is surjective.

Theorem 2.63. Let A be a C∗-algebra. There exists a universal representation π of A onto a
Hilbert space H such that π : A → π(A)′′ extends to a surjective isometry π̃ : A∗∗ → π(A)′′ that is
a weak∗-to-ultraweak homeomorphism. Moreover, the predual of π(A)′′ is isometrically isomorphic to
A∗.

Proof. We will use the representation π and Hilbert space H de�ned above Proposition 2.60. By
Theorem 2.62, there is a unique linear surjective map π̃ : A∗∗ →M where M = π(A)′′. Recalling its
construction, π̃ was the composition of the isometric isomorphism Λ−1 : (M∗)

∗ →M and the conjugate
of the map Ω: M∗ → A∗ that itself was the restriction of the conjugate map π∗ : M ∗ → A∗. We will
�rst show that Ω is a surjective isometry, yielding the second statement.

For all ω ∈M∗, then

‖Ω(ω)‖ = ‖ω ◦ π‖ = sup{|ω(π(x))| |x ∈ A, ‖x‖ ≤ 1}.

π is an injective ∗-homomorphism and hence an isometry, so

sup{|ω(π(x))| |x ∈ A, ‖x‖ ≤ 1} = sup{|ω(y)| | y ∈ π(A), ‖y‖ ≤ 1} ≤ sup{|ω(y)| | y ∈M , ‖y‖ ≤ 1}.

In fact, the opposite inequality also holds. Since π(A) is nondegenerate, it is ultraweakly dense in M
by von Neumann's density theorem. Hence for any y ∈ (M )1 there is a net (yα)α∈A with ‖yα‖ ≤ 1
for all α ∈ A by converging ultraweakly to y because of Kaplansky's density theorem and Proposition
2.1. Since ω is ultraweakly continuous, ω(yα)→ ω(y) as well, implying |ω(yα)| → |ω(y)|. Since

|ω(yα)| ≤ sup{|ω(y)| | y ∈ π(A), ‖y‖ ≤ 1}

for all α ∈ A, it follows that |ω(y)| ≤ sup{|ω(y)| | y ∈ π(A), ‖y‖ ≤ 1} as well, proving the other
inequality. Finally, as

sup{|ω(y)| | y ∈M , ‖y‖ ≤ 1} = ‖ω‖,
we have proved that ‖Ω(ω)‖ = ‖ω‖ for all ω ∈M∗. Hence Ω is an isometry.

To prove that Ω is surjective, let ϕ ∈ A∗. By Theorem 2.34, it follows that ϕ =
∑4
i=1 λiϕi for λi ∈ C

and ϕi ∈ S(A) where i = 1, 2, 3, 4. Using the GNS representations of A, de�ne elements ξ and η in H
by

ξ =

4∑
i=1

λiξϕi , η =

4∑
i=1

ξϕi ,
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where each ξϕi is considered as an element in H. If ω ∈ M∗ is given by ω(T ) = 〈Tξ, η〉 for T ∈ M ,
then for all x ∈ A we have

Ω(ω)(x) = ω(π(x)) = 〈π(x)ξ, η〉 =

4∑
i=1

λi〈π(x)ξϕi , ξϕi〉 =

4∑
i=1

λi〈πϕi(x)ξϕi , ξϕi〉 =

4∑
i=1

λiϕi(x) = ϕ(x).

Hence Ω is surjective, so M∗ is isometrically isomorphic to A∗ under Ω.

For the �rst statement, note that

‖Ω∗(ϕ)‖ = sup{|ϕ(Ω(ω))| |ω ∈M∗, ‖ω‖ ≤ 1} = sup{|ϕ(ψ)| |ψ ∈ A∗, ‖ψ‖ ≤ 1} = ‖ϕ‖

by Ω being a surjective isometry, so Ω∗ is an isometry. Finally, for ϕ ∈ (M∗)
∗, de�ne ψ : A∗ → C by

ψ(Ω(ω)) = ϕ(ω), possible as Ω is surjective. Then ψ is well-de�ned, linear and bounded above by ‖ϕ‖
by Ω being an isometry, and Ω∗(ψ) = ϕ, so Ω∗ is surjective. Therefore π̃ is a surjective isometry, and
since (Ω∗)−1 = (Ω−1)∗, it follows that Ω∗ is a weak∗-to-weak∗ homeomorphism, as dual mappings are
always weak∗-to-weak∗ continuous. It therefore follows that π̃ is also a weak∗-to-ultraweak operator
topology homeomorphism.

Finally, π is a universal representation. Indeed, let ρ : A → B(K) be a nondegenerate representation
of A onto some Hilbert space K. Then by Theorem 2.62, ρ induces a linear map ρ̃ : A∗∗ → ρ(A)′′.
De�ne ρ0 = ρ̃ ◦ π̃−1. Then ρ0 is an ultraweakly continuous linear map of π(A)′′ onto ρ(A)′′, and
ρ0(π(x)) = ρ̃(ι(x)) = ρ(x) for all x ∈ A. Furthermore, ρ0 is also a ∗-homomorphism (see page 59) so
π is indeed universal.

The above theorem is truly a gold mine. The above surjective isometry allows us to identify the
universal enveloping von Neumann algebra of A with A∗∗ and A∗∗ can hence be endowed with a
C∗-algebra structure, whereupon the surjective isometry π̃ of Theorem 2.63 becomes a ∗-isomorphism.
By Theorem 2.63, the inclusion ι : A → A∗∗ becomes a ∗-homomorphism. Indeed, if π is a universal
representation of A, then by the identi�cation under the map π̃ : A∗∗ → π(A)′′, then ι is just π.
Furthermore, as ι(A) (or A) is weak∗-dense in the dual space A∗∗, it is ultraweakly dense in the von
Neumann algebra A∗∗, and (A∗∗)∗ ∼= A∗ by the isometric isomorphism Ω: (A∗∗)∗ ∼= A∗ given by

Ω(ω)(a) = ω(ι(a)), ω ∈ (A∗∗)∗, a ∈ A.

This is of course easy to remember; one of the asterisks cancels out!

Equally important is that the de�ning property of universal representations tells us that for any non�
degenerate representation ρ : A → B(H), there exists a surjective normal ∗-homomorphism ρ0 : A∗∗ →
ρ(A)′′ such that ρ = ρ0 ◦ ι. Any linear map ϕ : A → B of C∗-algebras also induces a second adjoint
linear map ϕ∗∗ : A∗∗ → B∗∗ of von Neumann algebras by composing with appropriate surjective isome�
tries, the aforementioned theorem again helping us out. We will investigate this before treading other
waters.

Proposition 2.64. Suppose that A and B are C∗-algebras and ϕ : A → B is a bounded linear map.
Let ϕ∗∗ : A∗∗ → B∗∗ denote its second adjoint.

(i) ϕ∗∗ has the same norm as ϕ;
(ii) ϕ∗∗ is ultraweakly-to-ultraweakly continuous (i.e. normal) when considered as a map between the

enveloping von Neumann algebras;
(iii) if ψ : B → C is a bounded linear map, then

(ψ ◦ ϕ)∗∗ = ψ∗∗ ◦ ϕ∗∗

as maps between the enveloping von Neumann algebras;
(iv) if ιA : A → A∗∗ and ιB : B → B∗∗ denote the natural inclusions, then ϕ∗∗ ◦ ιA = ιB ◦ ϕ as maps

of A into the enveloping von Neumann algebra of B.

Proof. (ii) is clear from the outset (see page 60). To prove (iv), note �rst that as maps of normed
spaces, then for ψ ∈ B∗, we have

ϕ∗∗(ιA(a))(ψ) = (ιA(a) ◦ ϕ∗)(ψ) = ϕ∗(ψ)(a) = ψ(ϕ(a)) = ιB(ϕ(a))(ψ),
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so that the equality holds for A∗∗ and B∗∗ as Banach spaces. Let π and ρ be universal representations of
A and B respectively, inducing surjective isometries π̃ : A∗∗ → π(A)′′ and ρ̃ : B∗∗ → π(B)′′ by Theorem
2.63. When considered as maps between the C∗-algebras and their enveloping von Neumann algebras,
ιA and ιB are just the maps π and ρ, i.e. ιA = π̃−1 ◦ π and ιB = ρ̃−1 ◦ ρ. Likewise, ϕ∗∗ as a map of
von Neumann algebras is just the map ρ̃ ◦ ϕ∗∗ ◦ π̃−1, so as

ρ̃ ◦ ϕ∗∗ ◦ π̃−1 ◦ π = ρ̃ ◦ ϕ∗∗ ◦ ιA = ρ̃ ◦ ιB ◦ ϕ = ρ ◦ ϕ.

Hence we obtain (iv).

For (i), it is clear that ‖ϕ∗∗‖ ≤ ‖ϕ∗‖ ≤ ‖ϕ‖. Let a ∈ A be arbitrary. By the Hahn-Banach theorem
[13, Theorem 5.8], there exists ψ ∈ B∗ such that ‖ψ‖ = 1 and ψ(ϕ(a)) = ‖ϕ(a)‖. Since

ϕ∗∗(ιA(a))(ψ) = ιA(a) ◦ ϕ∗(ψ) = ϕ∗(ψ)(a) = ψ(ϕ(a)) = ‖ϕ(a)‖,

it follows that
‖ϕ(a)‖ = |ϕ∗∗(ιA(a))(ψ)| ≤ ‖ϕ∗∗(ι(a))‖ ≤ ‖ϕ∗∗‖‖a‖.

Hence ‖ϕ‖ ≤ ‖ϕ∗∗‖, so ‖ϕ‖ = ‖ϕ∗∗‖ when considering ϕ∗∗ as a map of dual spaces. For the von
Neumann algebra case, then note that because π̃ and ρ̃ as de�ned in Theorem 2.63 are isometries, it
follows that ‖ρ̃ ◦ϕ∗∗ ◦ π̃−1‖ ≤ ‖ϕ‖. For a ∈ (A)1, ιA(a) ∈ (A∗∗)1 and hence T = π̃(ιA(a)) ∈ (π(A)′′)1.
Remembering that ϕ∗∗ ◦ ιA = ιB ◦ ϕ, we have

‖ρ̃ ◦ ϕ∗∗ ◦ π̃−1‖ ≥ ‖ρ̃ ◦ ϕ∗∗ ◦ π̃−1(T )‖ = ‖ρ̃(ιB(ϕ(a)))‖ = ‖ϕ(a)‖,

so ‖ϕ‖ ≤ ‖ρ̃ ◦ ϕ∗∗ ◦ π̃−1‖. Hence ϕ∗∗ has the same norm as ϕ.

To prove (iii), let ω be a universal representation of C. As maps of dual spaces, we have (ψ ◦ ϕ)∗∗ =
(ϕ∗ ◦ψ∗)∗ = ψ∗∗ ◦ϕ∗∗ (see 60). With ψ∗∗ seen as the von Neumann algebra map given by ω̃ ◦ψ∗∗ ◦ ρ̃−1

and ϕ∗∗ seen as above, we have

(ω̃ ◦ ψ∗∗ ◦ ρ̃−1) ◦ (ρ̃ ◦ ϕ∗∗ ◦ π̃−1) = ω̃ ◦ (ψ ◦ ϕ)∗∗ ◦ π̃−1,

which is precisely the map (ψ ◦ ϕ)∗∗ considered as a map over the enveloping von Neumann algebras
of A and C. Hence (iii) follows, and the proof is complete.

In the proof above, we used the explicit properties of the map connecting second duals to von Neumann
algebras; however, as one can see, it is rather tedious notation-wise which is why we will not make use
of this connection too often. We will return to other properties of the second adjoint map shortly in
the next chapter after introducing the next important concept, with (hopefully) more concise proofs.

We end the chapter with a nice application of the enveloping von Neumann algebra.

Corollary 2.65. Let A be a C∗-algebra. If ϕ ∈ A∗, there exists a representation π : A → B(H) and
ξ, η ∈ H such that

ϕ(x) = 〈π(x)ξ, η〉, x ∈ A

and ‖ω‖ = ‖ξ‖‖η‖.

Proof. Let ω ∈ (A∗∗)∗ such that ϕ(x) = ω(ι(x)) for all x ∈ A. By Proposition 2.44, we can write
ω = U · ψ for some partial isometry U ∈ A∗∗ and a positive linear functional ψ ∈ (A∗∗)∗ such that
‖ψ‖ = ‖ω‖. Let ψ′ = ‖ψ‖−1ψ, so that ψ′ is a state. Letting (H, π′, ξ′) be the GNS triple associated to
ψ′, then

ϕ(x) = ω(ι(x)) = ψ(ι(x)U) = ‖ψ‖〈π′(ι(x)U)ξ′, ξ′〉 = 〈π(x)ξ, η〉

for all x ∈ A where π = π′ ⊗ ι, ξ = π(U)ξ′ and η = ‖ψ‖ξ′. Clearly ‖ϕ‖ ≤ ‖ξ‖‖η‖, and as ξ′ is a unit
vector, we have

‖ξ‖‖η‖ ≤ ‖ψ‖ = ‖ω‖ = ‖ϕ‖,

completing the proof.

If you, kind reader, have found the structure of the past two chapters too busy, I don't blame you.
Focus has not exactly been the word of the day, but the next three chapters will hopefully make up
for it.



CHAPTER 3

COMPLETELY POSITIVE MAPS

It might be very easy to realize what it means for a map to be positive. Indeed, there is no way it could
be mean anything other than sending positive elements to positive elements. If one were to be told
that there existed higher degrees of posivitity, there is at least some possibility that one could derive
the notion by transforming the original map into maps over matrix algebras, but more on that later.
For our de�nition to be the most encompassing, we will start out by de�ning a notion of positivity for
dual matrix algebras. The de�nition will then be given in the following section.

3.1 A matter of dual spaces

One should remember that there exists a notion of positivity for linear functionals and hence we
can derive one for maps over dual spaces of C∗-algebras (sending positive functionals to positive
functionals). This section will bring along a couple of isomorphisms so that the de�nition of positivity
in the next section needs no explanation.

We will start out by classifying positive matrices with C∗-algebra entries.

Lemma 3.1. Let A be a C∗-algebra and n ≥ 1. An element in A⊗Mn(C) is positive if and only if it
is a �nite sum of elements of the form

a =

n∑
i,j=1

a∗i aj ⊗ eij , a1, . . . , an ∈ A,

where (eij)
n
i,j=1 denotes the canonical set of matrix units of Mn(C). Hence an element of Mn(A) is

positive if and only if it is a �nite sum of matrices of the form (a∗i aj)
n
i,j=1 for a1, . . . , an ∈ A.

Proof. For a1, . . . , an ∈ A we have

n∑
i,j=1

a∗i aj ⊗ eij =

(
n∑
i=1

a∗i ⊗ ei1

) n∑
j=1

aj ⊗ e1j

 =

(
n∑
i=1

ai ⊗ e1i

)∗ n∑
j=1

aj ⊗ e1j

 ≥ 0.

Hence elements of the above form are positive, so �nite sums are as well (Proposition 0.6). Assuming
that a ∈ A ⊗Mn(C) is positive, there exists b ∈ A ⊗Mn(C) such that a = b∗b. Since b is of the form∑n
i,j=1 bij ⊗ eij for bij ∈ A, then we have

a =

 n∑
i,j=1

bij ⊗ eij

∗ n∑
k,l=1

bkl ⊗ ekl

 =
∑
i,j

∑
k,l

b∗ijbkl ⊗ ejiekl =

n∑
i=1

n∑
j,l=1

b∗ijbil ⊗ ejl,

completing the proof.

Lemma 3.2. Let A be a unital C∗-algebra and n ≥ 1. Then for any a = (aij)
n
i,j=1 ∈ Mn(A), the

following are equivalent:

(i) a is positive.

(ii) For all b ∈Mn,1(A), b∗ab =
∑n
i,j=1 b

∗
i aijbj is positive in M1,1(A) = A.

64
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Proof. (i)⇒ (ii) is clear. For the converse implication, assume that a is not positive. Let B be the
separable unital C∗-subalgebra generated by the entries aij for i, j = 1, . . . , n. Then a ∈ Mn(B), and
a is not positive in Mn(B). Since B is separable, we can take a faithful state ω ∈ S(B) by Proposition
A.17. Let (H, π, ξ) be the associated GNS triple, in which π is a faithful representation of B. By the
construction of the matrix algebra Mn(B), the induced map π̂ : Mn(B) → B(Hn) is faithful as well,
and hence π̂(a) is not positive in B(Hn).

It is now easy to verify that {(π(b1)ξ, . . . , π(bn)ξ) | b1, . . . , bn ∈ B} is dense in Hn. This implies that
there exist b1, . . . , bn ∈ B such that 〈π̂(a)η, η〉 is not a positive number, where η = (π(b1)ξ, . . . , π(bn)ξ).
As

〈π̂(a)η, η〉 =

n∑
i,j=1

〈π(aij)π(bj)ξ, π(bi)ξ〉 =

n∑
i,j=1

〈π(b∗i aijbj)ξ, ξ〉 = 〈π(b∗ab)ξ, ξ〉,

where b = (b1, . . . , bn) ∈ Mn,1(A), we see that π(b∗ab) is not positive, so b∗ab is not positive. Hence
the proof is complete.

It will become useful in the following discussion to identify the dual of a matrix algebra with other
vector spaces, establishing a notion of positivity by means of the positive linear functionals in the dual.
We will do this by establishing, not just one, but two linear isomorphisms on the dual, allowing for a
wider view on the identi�cation.

The �rst isomorphism is created as follows. For a given C∗-algebra A and n ≥ 1, we letMn(A∗) denote
the vector space of matrices with entries in A∗. For ϕ = (ϕij)

n
i,j=1 ∈Mn(A∗), de�ne

Ω(ϕ)(a) =

n∑
i,j=1

ϕij(aij)

for a = (aij)
n
i,j=1 ∈Mn(A). Then we have Ω(ϕ) ∈Mn(A)∗ for all ϕ ∈Mn(A∗), as it is linear and

|Ω(ϕ)(a)| ≤ n2 max
i,j
‖ϕij‖‖a‖,

for all a ∈ Mn(A) by Lemma 1.25, and Ω is linear as well. If Ω(ϕ) = 0 for some ϕ = (ϕij)
n
i,j=1 ∈

Mn(A∗), then it is easy to see that ϕij = 0 for all i, j = 1, . . . , n, so ϕ is the zero matrix. Moreover, if
ψ ∈Mn(A)∗ then by letting ρij : A →Mn(A) be the linear isometry that inserts a at place (i, j) in a
n×nmatrix and puts 0 everywhere else, we can de�ne a bounded linear functional ϕij = ψ◦ρij : A → C.
If ϕ = (ϕij)

n
i,j=1 ∈Mn(A∗) we then have

Ω(ϕ)(a) = ψ

 n∑
i,j=1

ρij(aij)

 = ψ(a)

for all a = (aij)
n
i,j=1 ∈Mn(A). Hence we can identify Mn(A)∗ with Mn(A∗) by the isomorphism Ω.

Also, by Corollary 1.12, any element of the vector space A∗ �Mn(C) can be written uniquely as an
element of the form ∑

i,j

ϕij ⊗ eij ,

where (eij)
n
i,j=1 denotes the canonical set of matrix units of Mn(C). De�ning a map Mn(A∗) →

A∗ �Mn(C) by

(ϕij)
n
i,j=1 7→

∑
i,j

ϕij ⊗ eij ,

it is clear that it is a linear isomorphism. This is the second isomorphism that we seek. We will say that
an element of A∗ �Mn(C) or Mn(A∗) is positive if it is identi�able with a positive linear functional
on Mn(A)∗ by either of these two isomorphisms. It will be useful to know when such elements are
positive, and the next lemma will clarify this matter.
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Lemma 3.3. Let A be a C∗-algebra and let ϕ = (ϕij)
n
i,j=1 ∈Mn(A∗). Then ϕ is positive if and only

if
n∑

i,j=1

ϕij(a
∗
i aj) ≥ 0

for all a1, . . . , an ∈ A.

Proof. Since

ϕ
(
(a∗i aj)

n
i,j=1

)
=

n∑
i,j=1

ϕij(a
∗
i aj)

for all a1, . . . , an ∈ A, the result follows from Lemma 3.1.

If E is a subspace of the dual A∗ of a C∗-algebra A, then we say that ϕ = (ϕij)
n
i,j=1 ∈ Mn(E) if

ϕij ∈ E for all i, j = 1, . . . , n, and that ϕ ∈Mn(E) is positive if ϕ is positive as an element inMn(A∗).

In the case where M is a von Neumann algebra, it will be useful to know that the above isomorphisms
preserve the notion of ultraweak continuity. Here is a proof.

Proposition 3.4. For any von Neumann algebra M ⊆ B(H) and n ≥ 1, then φ : Mn(M∗)→Mn(M )∗
given by

φ((ωij)
n
i,j=1)((Tij)

n
i,j=1) =

n∑
i,j=1

ωij(Tij)

is a linear isomorphism. Moreover,

max
i,j=1,...,n

‖ωij‖ ≤ ‖φ(ω)‖ ≤
n∑

i,j=1

‖ωij‖

for all ω = (ωij)
n
i,j=1 ∈Mn(M∗).

Proof. To see that φ is well-de�ned, let ω = (ωij)
n
i,j=1 ∈Mn(M∗) and for all i, j = 1, . . . , n write

ωij =

∞∑
m=1

ωξmij ,ηmij

for suitable sequences in H. For any m ≥ 1, let

ξm(i,j) = ιj(ξ
m
ij ), ηm(i,j) = ιi(η

m
ij ), i, j = 1, . . . , n,

where ιk denotes the inclusion of H into the k'th copy of H in Hn. Then for all T = (Tij)
n
i,j=1 ∈

Mn(M ), we have

n∑
i,j=1

∞∑
m=1

〈Tξm(i,j), η
m
(i,j)〉 =

n∑
i,j=1

∞∑
m=1

〈Tijξmij , ηmij 〉 =

n∑
i,j=1

ωij(Tij) = ω(T ).

Hence φ(T ) ∈Mn(M )∗, so φ is well-de�ned. Not surprisingly, φ is linear as well. For any ω ∈Mn(M )∗,
de�ne ωij : M → C for i, j = 1, . . . , n by

ωij(T ) = ω(ρij(T ))

where ρij(T ) is the element of Mn(M ) with T in position (i, j) and 0 everywhere else. To prove that
ωij ∈ M∗, write ω =

∑∞
m=1 ωξm,ηm for suitable sequences in Hn and write ξm = (ξ1

m, . . . , ξ
n
m) and

ηm = (η1
m, . . . , η

n
m) for all m ≥ 1. Then

ωij(T ) =

∞∑
m=1

〈ρij(T )ξm, ηm〉 =

∞∑
m=1

〈Tξjm, Tηim〉

for all T ∈M , proving that ωij ∈M∗. It is then easily seen that φ((ωij)
n
i,j=1) = ω, proving that φ is

a linear isomorphism, since it is injective by the remark after Lemma 3.2. To prove the inequalities,
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we do the following: note that for all i, j = 1, . . . , n, then ‖ρij(T )‖ = ‖T‖ by Lemma 1.25 for any
T ∈ (M )1. Hence for ω = (ωij)

n
i,j=1 ∈Mn(M∗), we have

|ωij(T )| = |φ(ω)(ρij(T ))| ≤ ‖φ(ω)‖,

proving the �rst inequality. Moreover, for any T = (Tij)
n
i,j=1 ∈ (Mn(M ))1 we have

|φ(ω)(T )| ≤
n∑

i,j=1

‖ωij‖‖Tij‖ ≤
n∑

i,j=1

‖ωij‖‖T‖,

proving the second.

3.2 Positive and completely positive maps

The next two sections should now be completely understandable.

De�nition 3.1. Let A and B be either of a C∗-algebra or a subspace of the dual of a C∗-algebra. A
linear map ϕ : A → B is called positive if it maps positive elements to positive elements.

De�nition 3.2. Once again, let A and B be either of a C∗-algebra or a subspace of the dual of a
C∗-algebra. For n ≥ 1, a linear map ϕ : A → B is called n-positive if the tensor product map

ϕ� idn : A�Mn(C)→ B �Mn(C)

is positive, where idn : Mn(C) → Mn(C) is the identity mapping. If ϕ is n-positive for all n ≥ 1, we
say that ϕ is completely positive.

We shall often write ϕ � idn = ϕ(n). By identifying A �Mn(C) and B �Mn(C) with Mn(A) and
Mn(B) respectively, we see that ϕ(n) is also a map Mn(A)→Mn(B) given by

ϕ(n)((aij)
n
i,j=1) = (ϕ(aij))

n
i,j=1.

As compositions of positive maps are again positive, it follows that compositions of completely positive
maps are again completely positive.

The discussion of duals of C∗-algebras will be set aside for the moment, and we will now concentrate
on positivity and complete positivity for C∗-algebras only.

Proposition 3.5. Let A and B be C∗-algebras. Then the set of completely positive maps A → B is a
cone, i.e. if ϕ and ψ are completely positive maps A → B and λ ≥ 0, then ϕ+ψ and λϕ are completely
positive.

Proof. Let n ≥ 1 and let a ∈ Mn(A) be positive. Then (ϕ + ψ)(n)(a) = ϕ(n)(a) + ψ(n)(a) ≥ 0 by
Proposition 0.6 and (λϕ(n))(a) = λϕ(n)(a) ≥ 0, so the result follows.

As positive linear functionals are Hermitian, it might be useful to know whether a similar property
holds for positive maps. We will deal with this straight away.

De�nition 3.3. A linear map ϕ : A → B of C∗-algebras is called Hermitian if ϕ(a∗) = ϕ(a)∗ for all
a ∈ A.

Proposition 3.6. A linear map ϕ : A → B of C∗-algebras is Hermitian if and only if ϕ(a) ∈ Bsa for
all a ∈ Asa.

Proof. If ϕ is Hermitian, then it clearly satis�es the other condition as well. If ϕ(a) ∈ Bsa for all
a ∈ Asa, let a ∈ A and write a = a1 + ia2 with self-adjoint elements a1, a2 ∈ Asa. Then

ϕ(a∗) = ϕ(a1)− iϕ(a2) = (ϕ(a1) + iϕ(a2))∗ = ϕ(a)∗

for all a ∈ A, so ϕ is Hermitian.

Proposition 3.7. Let A and B be C∗-algebras. Then all positive linear maps A → B are Hermitian.
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Proof. Let ϕ : A → B be a positive linear map and assume a ∈ Asa. Because |a|+a ≥ 0 and |a|−a ≥ 0
by the continuous functional calculus (note that x 7→ |x| maps 0 to 0, so that |a| can actually be
obtained by approximating with polynomials sending 0 to 0 � in short, it does not matter if A is
non-unital), it follows that ϕ(a) = 1

2 (ϕ(|a|+ a)− ϕ(|a| − a)) is self-adjoint, so that ϕ is Hermitian by
Proposition 3.6.

In Chapter 2, we depended upon the notion of positivity to de�ne normal maps. As we now have the
concept and notation fully laid out, we will prove one last helpful thing about normal maps.

Lemma 3.8. If ϕ : M → N is a normal linear map on von Neumann algebras M and N and n ≥ 1,
then ϕ(n) is normal as well.

Proof. Letting ω ∈ Mn(N )∗, then Proposition 3.4 yields ωij ∈ N∗, i, j = 1, . . . , n in a way such that
for all T = (Tij)

n
i,j=1 ∈Mn(M ) we have

ω(ϕ(n)(T )) =

n∑
i,j=1

ωij(ϕ(Tij)).

Proposition 2.45 tells us that ωij ◦ ϕ ∈ M∗ for all i, j = 1, . . . , n. Hence (ωij ◦ ϕ)ni,j=1 ∈ Mn(M∗)
de�nes an element ψ of Mn(M )∗ in the manner of Proposition 3.4, so that we have

ω(ϕ(n)(T )) = ψ(T ).

Hence ω ◦ ϕ(n) = ψ ∈Mn(M )∗ for all ω ∈Mn(N )∗, so by Proposition 2.45, ϕ(n) is normal.

We will now derive some additional properties of positive maps as well as a property implying positivity.

Proposition 3.9. Let A and B be C∗-algebras and let ϕ : A → B be a linear map. Then:

(i) If ϕ is positive, then ϕ is bounded.
(ii) If A is unital and ϕ is positive and 2-positive, then ‖ϕ‖ = ‖ϕ(1A)‖.

Proof. (i) Let f ∈ S(B). Then f ◦ ϕ is a positive linear functional on A, so it is bounded as well. As

|(f ◦ ϕ)(a)| ≤ ‖f‖‖ϕ(a)‖ = ‖ϕ(a)‖

for all a ∈ A, then the Uniform Boundedness Principle [13, Theorem 5.13] yields that the set of
bounded linear functionals {f ◦ ϕ | f ∈ S(B)} is uniformly bounded. Hence there exists K ∈ R+ such
that

|(f ◦ ϕ)(a)| ≤ K‖a‖
for all f ∈ S(B) and a ∈ A. For a ∈ Asa, there exists a state ψ ∈ S(B) such that |ψ(ϕ(a))| = ‖ϕ(a)‖ by
Theorem 2.49, and hence ‖ϕ(a)‖ ≤ K‖a‖. For a ∈ A, then by decomposing a into the sum a = a1 +ia2

for a1, a2 ∈ Asa, we obtain

‖ϕ(a)‖ ≤ ‖ϕ(a1)‖+ ‖ϕ(a2)‖ ≤ K(‖a1‖+ ‖a2‖) = 2K‖a‖.

Hence ϕ is bounded.

(ii) We clearly have ‖ϕ(1A)‖ ≤ ‖ϕ‖. For the other inequality, we will pass to the matrix algebraM2(A)
for useful information. Since −‖a‖1A ≤ a ≤ ‖a‖1A for a ∈ Asa, then by positivity we obtain

−‖a‖ϕ(1A) ≤ ϕ(a) ≤ ‖a‖ϕ(1A)

and hence ‖ϕ(a)‖ ≤ ‖a‖‖ϕ(1A)‖. Given any a ∈ A, put

ã =

(
0 a∗

a 0

)
∈M2(A).

Clearly a = a∗. To calculate the norm of ã, pick a faithful unital ∗-representation π of A onto some
Hilbert space H, and let π(2) denote the induced faithful unital ∗-representation of M2(A) onto H2

de�ned as in Proposition 1.23. For ξ = (ξ1, ξ2) ∈ H2, we have

‖π(2)(ã)ξ‖2 =

∥∥∥∥(π(a∗)ξ2
π(a)ξ1

)∥∥∥∥2

= ‖π(a)∗ξ2‖2 + ‖π(a)ξ1‖2 ≤ ‖a‖2‖ξ‖2.
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Hence ‖ã‖ = ‖π(2)(ã)‖ ≤ ‖a‖. For ε > 0, then if η is a unit vector of H such that ‖π(a)η‖+ε ≥ ‖π(a)‖,
then ∥∥∥∥π(2)(ã)

(
0
η

)∥∥∥∥ =

∥∥∥∥( 0
π(a)η

)∥∥∥∥ = ‖π(a)η‖ ≥ ‖π(a)‖ − ε = ‖a‖ − ε.

Since ε > 0 was arbitrary, we conclude ‖a‖ ≤ ‖ã‖, thereby proving ‖a‖ = ‖ã‖. One proves in the same
manner that

ϕ(2)(ã) =

(
0 ϕ(a)∗

ϕ(a) 0

)
has norm ‖ϕ(a)‖ and that ‖ϕ(2)(1M2(A))‖ = ‖ϕ(1A)‖. Since ϕ is 2-positive, then by what we proved
above, we have

‖ϕ(a)‖ = ‖ϕ(2)(ã)‖ ≤ ‖ã‖‖ϕ(2)(1M2(A))‖ = ‖a‖‖ϕ(1A)‖

for all a ∈ A, and thus we conclude ‖ϕ‖ ≤ ‖ϕ(1A)‖ and hence equality.

Proposition 3.10 (Russo-Dye, 1966). Let A and B be unital C∗-algebras and let ϕ : A → B be a
unital linear contraction. Then ϕ is positive.

Proof. Suppose ϕ is contractive and let π be a faithful unital representation of B on some Hilbert space
H (see e.g. page viii). For any vector ξ ∈ H, de�ne ω : A → C by

ω(a) = 〈π(ϕ(a))ξ, ξ〉.

Then ω is a linear functional on A, ‖ω‖ ≤ ‖ξ‖2 and ω(1A) = ‖ξ‖2, so by [31, Theorem 13.5], ω is
positive. Hence if a ≥ 0, then

0 ≤ ω(a) = 〈π(ϕ(a))ξ, ξ〉.

Since ξ was arbitrary, it follows that 〈π(ϕ(a))ξ, ξ〉 ≥ 0 for all positive a ≥ 0 and ξ ∈ H, so π(ϕ(a)) ≥ 0
and hence ϕ(a) ≥ 0 for all a ≥ 0, since π was faithful.

We �nally look into some examples of completely positive maps.

Proposition 3.11. Let A and B be C∗-algebras. Then every ∗-homomorphism ϕ : A → B is completely
positive.

Proof. Since any ∗-homomorphism is positive, and ϕ(n) is a ∗-homomorphism for all n ≥ 1, the result
follows.

Proposition 3.12. Let A be a C∗-algebra. Then any positive linear functional ϕ : A → C is completely
positive.

Proof. Let ϕ ∈ A∗ be positive on A. We have to prove for any n ≥ 1 that ϕ(n) : Mn(A) → Mn(C) is
positive. By identifying Mn(C) with B(Cn), then for a1, . . . , an ∈ A and ξ = (ξ1, . . . , ξn) ∈ Cn, we
have

〈ϕ(n)((a∗i aj)
n
i,j=1)ξ, ξ〉 = 〈(ϕ(a∗i aj)

n
i,j=1)ξ, ξ〉

=

n∑
i,j=1

〈ϕ(a∗i aj)ξj , ξi〉

=

n∑
i,j=1

ϕ(a∗i aj)ξjξi = ϕ

( n∑
i=1

ξiai

)∗ n∑
j=1

ξjaj

 ≥ 0.

Hence ϕ(n)((a∗i aj)
n
i,j=1) ≥ 0. From Lemma 3.1 it follows that ϕ(n) is positive for all n ≥ 1.
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3.3 Properties of second adjoint maps

In Chapter 2, we took our time to de�ne the enveloping von Neumann algebras and how we could obtain
maps of these from maps over the original C∗-algebras. Some properties were deduced in Proposition
2.64. We now return immediately to the properties of second adjoint maps between double duals (or
enveloping von Neumann algebras) of C∗-algebras derived from linear maps, in a manner that sums
up everything that is needed for now.

Proposition 3.13. Suppose that A and B are C∗-algebras and ϕ : A → B is a bounded linear map.
Let ϕ∗∗ : A∗∗ → B∗∗ denote its second adjoint.

(i) ϕ∗∗ has the same norm as ϕ;
(ii) ϕ∗∗ is normal;
(iii) if ϕ is Hermitian, then so is ϕ∗∗;
(iv) if ϕ is positive, then so is ϕ∗∗;
(v) if ϕ is a ∗-homomorphism, then so is ϕ∗∗;
(vi) if ϕ is completely positive, then so is ϕ∗∗;

Proof. Let ιA : A → A∗∗ and ιB : B → B∗∗ denote the canonical inclusions with ultraweakly dense
images. (i) and (ii) was the content of Proposition 2.64, (i) and (ii).

For (iii), let T ∈ A∗∗ be self-adjoint. By Kaplansky's density theorem (Theorem 2.33), there is
a bounded net (ιA(aα))α∈A of self-adjoint operators in ιA(A) converging weakly to T and hence
ultraweakly by Proposition 2.1. Since ιA is faithful, aα is self-adjoint for all α ∈ A. Since the adjoint
operation is ultraweakly continuous, it follows from (ii) that

ϕ∗∗(T ) = lim
α∈A

ϕ∗∗(ι(aα)) = lim
α∈A

ιB(ϕ(aα))

= lim
α∈A

ιB(ϕ(aα))∗ =

(
lim
α∈A

ιB(ϕ(aα))

)∗
=

(
lim
α∈A

ϕ∗∗(ι(aα))

)∗
= ϕ∗∗(T )∗.

Hence ϕ∗∗(T ) is self-adjoint, so ϕ∗∗ is Hermitian by Proposition 3.6.

(iv) Let T ∈ A∗∗ be positive. By Kaplansky's density theorem, there is a bounded net of positive
operators in ιA(A) converging strongly and hence weakly to T . As ϕ∗∗ is normal, it is weakly-to-weakly
continuous on bounded sets by Proposition 2.1, so ιB(ϕ(xα)) = ϕ∗∗(ιA(xα)) → ϕ∗∗(T ) weakly; as
ιB(ϕ(xα)) is positive for all α ∈ A and (B∗∗)+ is weakly closed (indeed, M+ is weakly closed for any
von Neumann algebra M ), it follows that ϕ∗∗(T ) is positive.

(v) We only need to prove that ϕ is multiplicative by (iii). Let S, T ∈ A∗∗ and take nets (ιA(xα))α∈A
and (ιA(yβ))β∈B in A converging ultraweakly to S and T respectively. Because the product is ultra�
weakly continuous in each variable and ϕ∗∗ is ultraweakly continuous, it follows that

ϕ∗∗(ST ) = lim
α∈A

lim
β∈B

ϕ∗∗(ιA(xαyβ))

= lim
α∈A

lim
β∈B

ιB(ϕ(xα))ιB(ϕ(yβ)) = lim
α∈A

ιB(ϕ(xα))ϕ∗∗(T ) = ϕ∗∗(S)ϕ∗∗(T ).

(vi) Let n ≥ 1 and let T ∈Mn(A∗∗) be positive; we will show that (ϕ∗∗)(n)(T ) is positive. Since ι(A) is
ultraweakly and hence weakly dense in A∗∗, it follows from Proposition 1.36 thatMn(ιA(A)) is weakly
dense in Mn(A∗∗). By Kaplansky's density theorem, there exists a bounded net of positive operators
(Tα)α∈A in Mn(ιA(A)) such that Tα → T strongly. Each Tα is of the form ι

(n)
A (xijα )ni,j=1 where xijα ∈ A

for all α ∈ A and i, j = 1, . . . , n. Since ι(n)
A is an injective ∗-homomorphism, then Mn(ιA(A)) is a

C∗-algebra and hence each xα = (xijα )ni,j=1 ∈Mn(A) is a positive matrix itself. Note that for all α ∈ A
we have

(ϕ∗∗)(n)(Tα) = (ϕ∗∗(ιA(xijα )))ni,j=1 = (ιB(ϕ(xijα )))ni,j=1 = ι
(n)
B ϕ(n)(xα) ≥ 0

since ϕ is completely positive. As ϕ∗∗ is normal by (ii) then (ϕ∗∗)(n) is normal by Lemma 3.8, so
Proposition 2.1 yields that (ϕ∗∗)(n)(Tα)→ (ϕ∗∗)(n)(T ) ultraweakly. Since Mn(B∗∗)+ is weakly closed
and (ϕ∗∗)(n)(Tα) ∈Mn(B∗∗)+ for all α as found above, we conclude that (ϕ∗∗)(n)(T ) is positive.
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A wonderful consequence of the properties of second adjoint maps is the following: it can be used every
day when taking a shower and twice on New Year's Eve if there is no soup and cigarettes left.

Proposition 3.14. Let A be a C∗-algebra with a closed two-sided ideal J. Then

A∗∗ ∼= J∗∗ ⊕ (A/J)∗∗.

Proof. Note that J and A/J are C∗-algebras (see e.g. [24, Theorem 8.1]). Let j : J → A denote the
inclusion map and let π : A → A/J denote the canonical quotient map. Then j∗∗ : J∗∗ → A∗∗ and
π∗∗ : A∗∗ → (A/J)∗∗ are normal homomorphisms by Proposition 3.13, and j∗∗ is injective by Lemma
A.18. Furtheremore, (j∗∗(J∗∗))r = j∗∗((J∗∗)r) and (π∗∗(X∗∗))r = π∗∗((X∗∗)r) are ultraweakly compact
and hence ultraweakly closed for all r > 0 by normality of j∗∗ and π∗∗ as well as Corollary 2.9. Now
it follows from Theorem 2.11 that j∗∗(J∗∗) and π∗∗(X∗∗) are ultraweakly closed. Since Lemma A.18
yields that kerπ∗∗ equals the ultraweak closure of j∗∗(J∗∗) and that (A/J)∗∗ equals the ultraweak
closure of π∗∗(X∗∗), it then follows that kerπ∗∗ = j∗∗(J∗∗) and that π∗∗ is surjective. Finally noting
that J∗∗ ∼= j∗∗(J∗∗), the result follows from Proposition 2.53.

Corollary 3.15. Let A be a non-unital C∗-algebra, and let Ã denote its unitization. Then

(Ã)∗∗ ∼= A∗∗ ⊕ C.

Proof. As C∗∗ = C, the result clearly follows from Proposition 3.14.

3.4 Stinespring's representation theorem

Let A be a C∗-algebra. The ∗-isomorphism ψ : B(C) → C given by V 7→ V (1) is of course a positive
map, so if ϕ : A → B(C) is a positive linear map, then the corresponding linear functional ψ◦ϕ : A → C
is positive. The GNS representation now yields a GNS triple (K, π, ξ) such that ψ(ϕ(x)) = 〈π(x)ξ, ξ〉
for all x ∈ A. De�ning V : C→ H by V (λ) = λξ, then as

〈V (λ), η〉 = λ〈ξ, η〉 = λ〈η, ξ〉, λ ∈ C, η ∈ H,

we see that V ∗ : H → C is given by V ∗η = 〈η, ξ〉 for η ∈ H. Hence

ϕ(x)(1) = ψ(ϕ(x)) = 〈π(x)ξ, ξ〉 = V ∗(π(x)ξ) = V ∗(π(x)V (1)) = (V ∗π(x)V )(1)

for all x ∈ A, so ϕ(x) = V ∗π(x)V . To summarize, if H = C, then for a given positive linear map
ϕ : A → B(H) we have found a Hilbert space K, a representation π : A → B(K) and a bounded linear
operator V : H → K such that ϕ(x) = V ∗π(x)V for all x ∈ A. As it turns out, we can in fact generalize
this to any Hilbert space H if we put a notable restriction on ϕ � it has to be completely positive. The
proof is somewhat long, but it has a wide range of applications we cannot a�ord to miss out on.

Theorem 3.16 (Stinespring's representation theorem, 1955). Let A be a C∗-algebra and H a Hilbert
space. Moreover, let ϕ : A → B(H) be a linear map. Then the following are equivalent:

(i) ϕ is completely positive.
(ii) There is a Hilbert space K, a representation π : A → B(K) and a bounded linear operator V : H →
K such that

ϕ(a) = V ∗π(a)V, a ∈ A.

If A is unital, π can be chosen to be unital.

If A is a von Neumann algebra and ϕ is normal, then π in (ii) can be chosen to be normal.

Proof. The easy part is proving that the second condition implies the �rst one. Assume that (ii) is
satis�ed, let n ≥ 1 and let a = (aij)

n
i,j=1 ∈ Mn(A) be positive. We will identify Mn(B(H)) with

B(Hn). For any ξ = (ξ1, . . . , ξn) ∈ Hn, note that

〈ϕ(n)(a)ξ, ξ〉Hn =

n∑
i,j=1

〈ϕ(aij)ξj , ξi〉H =

n∑
i,j=1

〈π(aij)V ξj , V ξi〉K = 〈π(n)(a)V ξ, V ξ〉Kn ,
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where V ξ = (V ξ1, . . . , V ξn) ∈ Kn. Since π is a ∗-homomorphism, then π(n) is positive by Proposition
3.11, and therefore 〈ϕ(n)(a)ξ, ξ〉 = 〈π(n)(a)V ξ, V ξ〉 ≥ 0. Therefore ϕ(n)(a) is positive, so ϕ(n) is positive
for n ≥ 1. Hence ϕ is completely positive.

Now assume that (i) is satis�ed. The aim is �rst to de�ne a sesquilinear form 〈·, ·〉ϕ : A�H×A�H → C
on the algebraic tensor product A�H such that〈

n∑
i=1

ai ⊗ ξi,
m∑
j=1

bj ⊗ ηj

〉
ϕ

=
∑
i,j

〈ϕ(b∗jai)ξi, ηj〉H. (3.1)

The question is whether we can obtain a well-de�ned sesquilinear form satisfying the above equation.
To address this, we will show that there exists a sesquilinear form on A �H that satis�es (3.1). For
a ∈ A and ξ ∈ H, the map (b, η) 7→ 〈ϕ(b∗a)ξ, η〉H is bilinear and hence induces a unique linear map
f(a,ξ) : A�H → C such that

f(a,ξ)(b⊗ η) = 〈η, ϕ(b∗a)ξ〉H, b ∈ A, η ∈ H,

by universality of the algebraic tensor product. Letting (A � H)∗ denote the vector space of (not
necessarily bounded) linear functionals A�H → C, the map σ : A×H → (A�H)∗ given by

σ(a, ξ)(v) = f(a,ξ)(v), v ∈ A�H,

is bilinear, so universality again yields a linear map σ̃ : A�H → (A�H)∗ satisfying

σ̃(a⊗ ξ)(b⊗ η) = f(a,ξ)(b⊗ η) = 〈ϕ(b∗a)ξ, η〉H.

By de�ning 〈v, w〉ϕ = σ̃(v)(w) for v, w ∈ A�H, 〈·, ·〉ϕ is sesquilinear and satis�es (3.1).

Observe that for a1, . . . , an ∈ A and ξ = (ξ1, . . . , ξn) ∈ Hn, then if we de�ne x ∈Mn(A) by

x =

a
∗
1a1 . . . a∗1an
...

...
a∗na1 . . . a∗nan

 , (3.2)

Lemma 3.1 yields that A is positive and hence〈
n∑
i=1

ai ⊗ ξi,
n∑
i=1

ai ⊗ ξi

〉
ϕ

=

n∑
i,j=1

〈ϕ(a∗jai)ξi, ξj〉H = 〈ϕ(n)(x)ξ, ξ〉Hn ≥ 0,

since ϕ(n) was positive by assumption. Hence 〈·, ·〉ϕ is a positive semi-de�nite sesquilinear form, but
it is not necessarily an inner product. In order to turn it into an inner product, we need to pass to an
appropriate quotient space. Let N ⊆ A � H be de�ned by N = {v ∈ A � H | 〈v, v〉ϕ = 0}. By the
Cauchy-Schwarz inequality (Proposition 0.1) we have

|〈v, w〉ϕ| ≤ 〈v, v〉ϕ〈w,w〉ϕ

for x, y ∈ A�H, so
N = {v ∈ A�H | 〈v, w〉ϕ = 0 for all w ∈ A�H}.

This makes it clear that N is a subspace of A�H. We now de�ne an inner product on the quotient
vector space (A�H)/N by

〈[x], [y]〉ϕ = 〈x, y〉ϕ,

and we let K denote the Hilbert space completion of the (A�H)/N with respect to this inner product.

We now assume that A has a unit 1A. Given a ∈ A, then since the map A × H → A �H given by
(b, ξ) 7→ ab⊗ ξ is bilinear, it induces a unique linear map π′(a) : A�H → A�H given by

π′(a)

(
n∑
i=1

ai ⊗ ξi

)
=

n∑
i=1

aai ⊗ ξi.
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If v =
∑n
i=1 ai ⊗ ξi ∈ A�H, note that by de�ning

ã =


a 0 · · · 0
0 a . . . 0
...

...
. . .

...
0 0 . . . a

 , y =


a1 a2 · · · an
0 0 . . . 0
...

...
...

0 0 . . . 0

 ,

then y∗ã∗ãy ≤ ‖ã‖2y∗y = ‖a‖2y∗y. Hence if we put ξ = (ξ1, . . . , ξn), we obtain

〈π′(a)v, π′(a)v〉ϕ =

〈
n∑
i=1

aai ⊗ ξi,
n∑
i=1

aai ⊗ ξi

〉
ϕ

=

n∑
i,j=1

〈ϕ(a∗ja
∗aai)ξi, ξj〉H

= 〈ϕ(n)(y∗ã∗ãy)ξ, ξ〉Hn ≤ ‖a‖2〈ϕ(n)(y∗y)ξ, ξ〉Hn = ‖a‖2〈v, v〉ϕ.

Hence it is possible to de�ne a bounded linear map π̃(a) : (A�H)/N → (A�H)/N by π̃(a)([v]) =
[π′(a)(v)] for v ∈ A � H and by passing to completions (using Proposition A.1) we obtain a unique
bounded linear operator π(a) ∈ B(K) such that π(a)w = π̃(a)(w) for w ∈ (A � H)/N . This gives
us a map π : A → B(K). We claim that π is actually a unital ∗-homomorphism. Let a, b ∈ A and
w = [

∑n
i=1 ai ⊗ ξi] ∈ (A�H)/N . Clearly π(1A)w = w and π(a+ b)w = π(a)w + π(b)w; moreover,

π(ab)

[
n∑
i=1

ai ⊗ ξi

]
=

[
n∑
i=1

abai ⊗ ξi

]
= π(a)

[
n∑
i=1

bai ⊗ ξi

]
= π(a)π(b)

[
n∑
i=1

ai ⊗ ξi

]
,

so π(ab)w = π(a)π(b)w. As〈
π(a∗)

[
n∑
i=1

ai ⊗ ξi

]
,

 m∑
j=1

bj ⊗ ηj

〉
K

=

〈[
n∑
i=1

a∗ai ⊗ ξi

]
,

 m∑
j=1

bj ⊗ ηj

〉
ϕ

=
∑
i,j

〈ϕ(b∗ja
∗ai)ξi, ηj〉H

=
∑
i,j

〈ϕ((abj)
∗ai)ξi, ηj〉H

=

〈[
n∑
i=1

ai ⊗ ξi

]
,

 m∑
j=1

abj ⊗ ηj

〉
ϕ

=

〈[
n∑
i=1

ai ⊗ ξi

]
, π(a)

 m∑
j=1

bj ⊗ ηj

〉
K

=

〈
π(a)∗

[
n∑
i=1

ai ⊗ ξi

]
,

 m∑
j=1

bj ⊗ ηj

〉
K

we also have π(a∗)w = π(a)∗w. Using continuity of π(1A), π(a) and π(b), we conclude that π is indeed
a unital ∗-homomorphism.

De�ne V : H → K by V (ξ) = [1A ⊗ ξ] for ξ ∈ H. Since V is clearly linear and

‖V (ξ)‖2K = 〈[1A ⊗ ξ], [1A ⊗ ξ]〉ϕ = 〈1A ⊗ ξ, 1A ⊗ ξ〉ϕ = 〈ϕ(1A)ξ, ξ〉H ≤ ‖ϕ‖‖ξ‖2H
for all ξ ∈ H, V is a bounded linear operator. Finally, for a ∈ A, then we have for all ξ, η ∈ H that

〈V ∗π(a)V ξ, η〉H = 〈π(a)V ξ, V η〉K
= 〈π(a)[1A ⊗ ξ], [1A ⊗ η]〉K
= 〈[a⊗ ξ], [1A ⊗ η]〉ϕ
= 〈a⊗ ξ, 1A ⊗ η〉ϕ
= 〈ϕ(1∗Aa)ξ, η〉H
= 〈ϕ(a)ξ, η〉H.
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Hence V ∗π(a)V = ϕ(a), completing the proof of the unital case.

If A is non-unital, we consider instead the enveloping von Neumann algebra A∗∗. It follows from Propo�
sition 3.13 that ϕ∗∗ : A∗∗ → B(H)∗∗ is completely positive. Since B(H) is a von Neumann algebra, it
follows from the discussion after Theorem 2.63 that there exists a representation θ : B(H)∗∗ → B(H)
such that θ(ιB(H)(T )) = T for all T ∈ B(H). As θ is completely positive, θ ◦ ϕ∗∗ is completely pos�
itive. Because we know that (i)⇒ (ii) holds for unital C∗-algebras, there exists a Hilbert space K, a
representation π : A∗∗ → B(K) and a bounded linear operator V : H → K such that

θ ◦ ϕ∗∗(a) = V ∗π(a)V, a ∈ A∗∗.

Since ϕ∗∗ ◦ ιA = ιB(H) ◦ ϕ then for any a ∈ A,

V ∗π(ιA(a))V = θ ◦ ϕ∗∗(ιA(a)) = ϕ(a),

so π ◦ ιA : A → B(K) is the sought-after representation.

Finally, assume that A is a von Neumann algebra and that ϕ is normal and completely positive. Let
(Tα)α∈A be a bounded, increasing net of self-adjoint operators in A with T ∈ A being its strong
operator limit and least upper bound T ∈ A. For any R and S in A, then because Tα → T ultraweakly
by Proposition 2.1 we see that R∗TαS → R∗TS ultraweakly. By normality of ϕ, ϕ(R∗TαS)→ ϕ(R∗TS)
ultraweakly. For w = [

∑n
i=1 Si ⊗ ξi] ∈ (A�H)/N we then have

〈π(Tα)w,w〉ϕ =

n∑
i,j=1

〈π(Tα)[Si ⊗ ξi], [Sj ⊗ ξj ]〉ϕ

=

n∑
i,j=1

〈TαSi ⊗ ξi, Sj ⊗ ξj〉ϕ

=

n∑
i,j=1

〈ϕ(S∗j TαSi)ξi, ξj〉H

→
n∑

i,j=1

〈ϕ(S∗j TSi)ξi, ξj〉H = 〈π(T )w,w〉ϕ.

As π is a ∗-homomorphism, (π(Tα))α∈A is a bounded, increasing net of self-adjoint operators in
B(H) and hence has a least upper bound S that is also its strong operator limit. As this im�
plies 〈π(Tα)w,w〉 → 〈Sw,w〉 for all w ∈ (A � H)/N , it follows that 〈π(T )w,w〉 = 〈Sw,w〉 for all
w ∈ (A�H)/N . Because (A�H)/N is dense in K by construction, it follows that 〈π(T )ξ, ξ〉 = 〈Sξ, ξ〉
for all ξ ∈ K, so π(T ) = S. Therefore π is normal.

Since the main concern of the project is von Neumann algebras, we are now interested in looking at
what consequences it has for completely positive maps on these. The two next results will reduce our
future work greatly.

Corollary 3.17. Let (Mi)i∈I and (Ni)i∈I be families of von Neumann algebras with Mi ⊆ B(Hi)
and Ni ⊆ B(Ki) for families of Hilbert spaces (Hi)i∈I and (Ki)i∈I . De�ne M =

⊕
i∈I Mi and N =⊕

i∈I Ni and let (ϕi)i∈I be a family of completely positive maps Mi → Ni such that ϕi(1Mi
) = 1Ni

for all i ∈ I. Then ϕ =
⊕

i∈I ϕi : M → N given by

ϕ((Ti)i∈I) = (ϕi(Ti))i∈I

is a completely positive map with ϕ(1M ) = 1N . If all ϕi are normal, then ϕ is normal as well.

Proof. By Proposition 3.9, ‖ϕi‖ = 1 for all i ∈ I, so ϕ is well-de�ned, and clearly linear and bounded
as well with ϕ(1) = 1. By Stinespring's representation theorem then for all i ∈ I we have a Hilbert
space Li, a representation πi : Mi → B(Li) and a bounded linear operator Vi : Ki → Li such that

ϕi(Ti) = V ∗i πi(Ti)Vi, Ti ∈Mi.
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Note that 1 = ‖ϕi(1)‖ = ‖V ∗i π(1)Vi‖ = ‖V ∗i Vi‖ = ‖Vi‖2, so ‖Vi‖ = 1 for all i ∈ I. It is now possible
to de�ne a representation π : M → B(

⊕
i∈I Li) by

π((Ti)i∈I)(ξi)i∈I = (πi(Ti)ξi)i∈I , Ti ∈Mi, ξi ∈ Li,

and a bounded linear operator V :
⊕

i∈I Ki →
⊕

i∈I Li by V ((ξi)i∈I) = (Viξi)i∈I . In this case we see
that ϕ((Ti)i∈I) = V ∗π((Ti)i∈I)V for all (Ti)i∈I ∈ M , so Stinespring's representation theorem yields
that ϕ is completely positive.

Assume that all ϕi are normal and let ω ∈ N∗. Then there is a family (ωi)i∈I ∈
⊕

i∈I(Ni)∗ corre�
sponding to ω in the manner of Proposition 2.57, so ωi ◦ ϕi ∈ (Mi)∗ for all i ∈ I by Proposition 2.45.
As
∑
i∈I ‖ωi ◦ϕi‖ ≤

∑
i∈I ‖ωi‖ <∞, so there is a ψ ∈M∗ corresponding to (ωi ◦ϕi)i∈I ∈

⊕
i∈I(Mi)∗,

again in the manner of Proposition 2.57. Since

ω(ϕ((Ti)i∈I)) = ω((ϕi(Ti))i∈I) =
∑
i∈I

ωi ◦ ϕi(Ti) = ψ((Ti)i∈I),

we have that ω ◦ ϕ ∈M∗ for all ω ∈ N∗. Hence by Proposition 2.45, ϕ is normal.

Corollary 3.18. Let M1, M2, N1 and N2 be von Neumann algebras. Let ϕi : Mi → Ni, i =
1, 2 be completely positive normal maps. Then there is exactly one completely positive normal map
ϕ : M1⊗M2 → N1⊗N2 such that

ϕ(T1 ⊗ T2) = ϕ1(T1)⊗ ϕ2(T2), T1 ∈M1, T2 ∈M2.

Moreover, ‖ϕ‖ = ‖ϕ1‖‖ϕ2‖.

Proof. Assume that Ni acts on the Hilbert space Hi for i = 1, 2 so that ϕi maps into B(Hi). Stine�
spring's representation theorem yields the existence of Hilbert spaces Ki, unital normal representations
πi : Mi → B(Ki) and bounded linear maps Vi : Hi → Ki such that

ϕi(Ti) = V ∗i πi(Ti)Vi, Ti ∈Mi

for i = 1, 2. Proposition 2.56 in turn yields the existence of a unital representation

π : M1⊗M2 → B(K1 ⊗K2)

satisfying π(T1 ⊗ T2) = π1(T1)⊗ π2(T2) for Ti ∈Mi, i = 1, 2. From [14, Proposition 2.6.12] we obtain
a bounded linear operator V : H1 ⊗H2 → K1 ⊗K2 from V1 and V2 that uniquely satis�es

V (ξ1 ⊗ ξ2) = V1ξ ⊗ V2ξ2, ξi ∈ Hi, i = 1, 2.

Moreover, ‖V ‖ ≤ ‖V1‖‖V2‖ and V ∗ = V ∗1 ⊗ V ∗2 . De�ne

ϕ(T ) = V ∗π(T )V, T ∈M1⊗M2.

ϕ is clearly linear, and it follows from Stinespring's representation theorem that ϕ is completely positive.
Moreover, ϕ is normal, since the map T 7→ V ∗TV is ultraweakly-to-ultraweakly continuous and π is
normal. For T1 ∈M1 and T2 ∈M2, we have

ϕ(T1 ⊗ T2) = (V ∗1 π1(T1)V1)⊗ (V ∗2 π2(T2)V2) = ϕ1(T1)⊗ ϕ2(T2) ∈ N1 �N2,

so ϕ maps M1 �M2 into N1 � N2. Since N1⊗N2 is the ultraweak closure of N1 � N2 by von
Neumann's density theorem and ϕ is normal, it follows that ϕ maps into N1⊗N2 and satis�es the
wanted elementary tensor property. Moreover, it is uniquely determined by this property since it is
normal. Finally, Proposition 3.9 yields

‖ϕ‖ = ‖ϕ(1M1⊗M2
)‖ = ‖ϕ1(1M1

)⊗ ϕ2(1M2
)‖ = ‖ϕ1(1M1

)‖‖ϕ2(1M2
)‖ = ‖ϕ1‖‖ϕ2‖,

completing the proof.
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Let M ⊆ B(H) and N ⊆ B(K) be von Neumann algebras. We will make an attempt to describe
the predual of M ⊗N . For any positive ω ∈ M∗ and ϕ ∈ N∗, then by Proposition 3.12, ω and ϕ
are completely positive. As they are also ultraweakly continuous and hence normal, it follows from
Corollary 3.18 that there is a unique completely positive normal map ω ⊗ ϕ : M ⊗N → C such that

(ω ⊗ ϕ)(S ⊗ T ) = ω(S)⊗ ϕ(T ) = ω(S)ϕ(T ), S ∈M , T ∈ N ,

that also satis�es ‖ω ⊗ ϕ‖ = ‖ω‖‖ϕ‖. In the above expression, we have identi�ed the von Neumann
algebras C⊗C = C � C (Lemma 1.34) and C by means of the ∗-isomorphism given by λ ⊗ µ 7→ λµ
� this map is normal by Proposition 2.48. Hence ω ⊗ ϕ ∈ (M ⊗N )∗. We de�ne M∗ �N∗ to be the
linear span of all ω ⊗ ϕ in (M ⊗N )∗ constructed this way for positive ω ∈M∗ and ϕ ∈ N∗.

For arbitrary ω ∈M∗ and ϕ ∈ N∗, Theorem 2.40 yields that each of these is a linear combination of
positive ultraweakly continuous linear functionals on their respective von Neumann algebras, i.e.

ω =

n∑
i=1

λiωi, ϕ =

m∑
j=1

µjϕj ,

where each of the summands is a positive ultraweakly continuous functional. By de�ning

ω ⊗ ϕ :=

n∑
i=1

m∑
j=1

λiµjωi ⊗ ϕj ∈ (M ⊗N )∗,

then for all S ∈M and T ∈ N , we have

(ω ⊗ ϕ)(S ⊗ T ) =

n∑
i=1

m∑
j=1

λiµjωi(S)ϕj(T ) = ω(S)ϕ(T ).

Hence any ω ∈ M∗ and ϕ ∈ N∗ induce an element ω ⊗ ϕ ∈ M∗ �N∗ ⊆ (M ⊗N )∗ satisfying the
above equality for elementary tensors, and moreover, it is the only linear functional in (M ⊗N )∗ to
satisfy the above equality; if any other functional ψ ∈ (M ⊗N )∗ satis�es ψ(S⊗T ) = ω(S)ϕ(T ), then
ψ and ω ⊗ ϕ are equal on M �N , and since M ⊗N is the ultraweak closure of M �N by von
Neumann's density theorem, it follows from ultraweak continuity that ψ = ω⊗ϕ. By this uniqueness,
some relevant calculus for these tensor functionals follows, namely

(i) (ω1 + ω2)⊗ ϕ = ω1 ⊗ ϕ+ ω2 ⊗ ϕ for ω1, ω2 ∈M∗ and ϕ ∈ N∗;
(ii) ω ⊗ (ϕ1 + ϕ2) = ω ⊗ ϕ1 + ω ⊗ ϕ1 for ω ∈M∗ and ϕ1, ϕ2 ∈ N∗;
(iii) (λω)⊗ ϕ = ω ⊗ (λϕ) = λ(ω ⊗ ϕ) for ω ∈M∗, ϕ ∈ N∗ and λ ∈ C.

Finally, for any ξ ∈ H and η ∈ K, then ωξ ∈M∗ and ωη ∈ N∗ are positive, hence inducing a unique
ultraweakly continuous linear functional ωξ ⊗ ωη ∈M∗ �N∗ by Proposition 3.18, satisfying

Ω(S ⊗ T ) = 〈Sξ, ξ〉〈Tη, η〉 = 〈(S ⊗ T )ξ ⊗ η, ξ ⊗ η〉, S ∈M , T ∈ N .

Hence
ωξ⊗η = ωξ ⊗ ωη ∈M∗ �N∗

by uniqueness, so ωξ ∈M∗ �N∗ for all ξ ∈ H � K. Therefore ωξ is contained in the norm closure of
M∗�N∗ for all ξ ∈ H⊗K; as this norm closure is also a subspace of (M ⊗N )∗, Theorem 2.40 �nally
yields the following elegant solution to our problem:

Proposition 3.19. For any two von Neumann algebras M and N , M∗ � N∗ is norm-dense in
(M ⊗N )∗.

However, this statement, although helpful, does not provide the entire story about the product func�
tionals ω ⊗ ϕ for ω ∈M∗ and ϕ ∈ N∗. What are their norms? ‖ω ⊗ ϕ‖ = ‖ω‖‖ϕ‖ is what one would
expect and this statement is indeed true; the proof requires the fact that any ultraweakly continuous
linear functional has a polar decomposition, proved in Proposition 2.44.

Proposition 3.20. If ω ∈M∗ and ϕ ∈ N∗, then ‖ω ⊗ ϕ‖ = ‖ω‖‖ϕ‖.
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Proof. For any ω ∈M∗ and ϕ ∈ N∗, Proposition 2.44 yields the existence of partial isometries U ∈M
and V ∈ N as well as positive linear functionals η ∈M∗ and ψ ∈ N∗ such that

ω = U · η, η = U∗ · ω, ϕ = V · ψ, ψ = V ∗ · ϕ,

and moreover, ‖ω‖ = ‖η‖ and ‖ϕ‖ = ‖ψ‖. Consider the positive linear functional η ⊗ ψ ∈ (M ⊗N )∗
and note that for all S ∈M and T ∈ N we have

(ω ⊗ ϕ)(S ⊗ T ) = ω(S)ϕ(T ) = η(SU)ψ(TV ) = (η ⊗ ψ)((S ⊗ T )(U ⊗ V )) = (U ⊗ V ) · (η ⊗ ψ)(S ⊗ T )

and similarly
(η ⊗ ψ)(S ⊗ T ) = ω(SU∗)ϕ(TV ∗) = (U∗ ⊗ V ∗) · (ω ⊗ ϕ)(S ⊗ T ).

Since (U⊗V ) ·(η⊗ψ) and (U∗⊗V ∗) ·(ω⊗ϕ) are contained in (M ⊗N )∗ by Lemma 2.36 and Theorem
2.40, it follows by uniqueness that

ω ⊗ ϕ = (U ⊗ V ) · (η ⊗ ψ), η ⊗ ψ = (U∗ ⊗ V ∗) · (ω ⊗ ϕ).

In particular, this implies ‖ω ⊗ ϕ‖ = ‖η ⊗ ψ‖. Hence

‖ω ⊗ ϕ‖ = ‖η ⊗ ψ‖ = ‖η‖‖ψ‖ = ‖ω‖‖ϕ‖,

completing the proof.

3.5 Completely positive maps over dual spaces

It may seem peculiar to the reader that we have de�ned the notion of positive linear maps for not
just C∗-algebras, but also duals of these, and yet have not even been close to considering the lastly
mentioned case. This is where the dual spaces return, for only a short time but with a vengeance,
paving the way for some of the later and greater results of this thesis.

The �rst question one could ask is whether dual maps preserve positivity, and the answer is a�rmative.

Proposition 3.21. Let A and B be C∗-algebras. If ϕ : A → B is a linear positive map, then ϕ∗ : B∗ →
A∗ is positive. If ϕ is completely positive, then ϕ∗ is completely positive.

Proof. The second statement follows immediately from the �rst, since for all n ≥ 1, ψ = (ψij)
n
i,j=1 ∈

Mn(B∗) and a = (aij)
n
i,j=1 ∈Mn(A), then

(ϕ(n))∗(ψ)(a) = (ψ◦ϕ(n))(a) =

n∑
i,j=1

ψij(ϕ(aij)) =

n∑
i,j=1

ϕ∗(ψij)(aij) = (ϕ∗◦ψij)ni,j=1(a) = (ϕ∗)(n)(ψ)(a),

so (ϕ(n))∗ = (ϕ∗)(n). Assuming that ϕ is positive, then if ψ ∈ B∗ and a ∈ A are positive, then we have

ϕ∗(ψ)(a) = ψ(ϕ(a)) ≥ 0,

implying that ϕ∗ is positive.

We will soon need to know when a bounded linear map A → B∗ for C∗-algebras A and B is completely
positive. It turns out that there is a straightforward criterion for this to be true.

Proposition 3.22. Let A and B be C∗-algebras and ϕ : A → B∗ bounded and linear. Then the
following are equivalent:

(i) ϕ is completely positive.
(ii)

∑n
i,j=1 ϕ(a∗i aj)(b

∗
i bj) ≥ 0 for all n ≥ 1, a1, . . . , an ∈ A and b1, . . . , bn ∈ B.

Proof. If ϕ is completely positive, then for n ≥ 1 and any a1, . . . , an ∈ A, ϕ(n)((a∗i aj)
n
i,j=1) =

(ϕ(a∗i aj))
n
i,j=1 is a positive element of Mn(B∗), so (ii) holds by Lemma 3.3. Assuming instead that (ii)

holds, then for n ≥ 1 and a1, . . . , an ∈ A, then Lemma 3.3 allows us to go backwards and say that
ϕ(n)((a∗i aj)

n
i,j=1) = (ϕ(a∗i aj))

n
i,j=1 is positive in Mn(B∗), so Lemma 3.1 tells us that ϕ(n)(a) is positive

for all positive a ∈Mn(A), as sums of positive linear functionals are positive.
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The next proposition concerns functionals that we have met before � they are siblings of the functionals
described in Proposition 2.38.

Proposition 3.23. Let A be a C∗-algebra and let π : A → B(H) be a representation such that M =
π(A) has a cyclic unit vector ξ ∈ H. Let ωξ be the corresponding vector state and let E denote the
complex linear span of

Cξ = {ϕ ∈ A∗ | 0 ≤ ϕ ≤ ωξ ◦ π}.

Finally, let θ : M ′ → A∗ be given by

θ(T )(a) = 〈π(a)Tξ, ξ〉, T ∈M ′, a ∈ A.

Then θ is a completely positive linear isomorphism of M ′ onto E with a completely positive inverse.

Proof. θ is clearly well-de�ned, linear, bounded and maps intoA∗. For any ϕ ∈ E, write ϕ =
∑n
i=1 λiϕi

where λi ∈ C and ϕi ∈ Cξ for i = 1, . . . , n. By Proposition 2.38, there exists a positive operator Ti ∈M ′

such that θTi ◦ π = ϕi, in the notation of the aforementioned proposition. Since

ϕi(a) = θTi(π(a)) = 〈π(a)Tiξ, Tiξ〉 = 〈π(a)(Ti)
2ξ, ξ〉 = θ((Ti)

2)(a),

we have θ(
∑n
i=1 λi(T

′
i )

2) = ϕ; hence ϕ is surjective. Moreover, for any non-zero positive operator
T ∈M ′ with λ = ‖T‖ we have 0 ≤ λ−1/2T 1/2 ≤ 1H, so by Proposition 2.38 we �nd that the positive
linear functional functional θ(λ−1T ) = θλ−1/2T 1/2 is mapped into Cξ, whereupon θ(T ) ∈ E. Since any
operator in the unital C∗-algebra M ′ is a �nite linear combination of positive operators [31, Theorem
11.2], it follows that θ maps M ′ onto E.

Assuming that θ(T ) = 0 for some T ∈ M ′, then 0 = θ(T )(b∗a) = 〈Tπ(a)ξ, π(b)ξ〉 for all a, b ∈ A.
Since ξ is cyclic for M , it follows that T = 0. Hence θ : M ′ → E is a linear isomorphism.

In order to prove that θ is completely positive, it is su�cient by Proposition 3.22 to prove that

n∑
i,j=1

θ(T ∗i Tj)(a
∗
i aj) ≥ 0, n ≥ 1, T1, . . . , Tn ∈M ′, a1, . . . , an ∈ A.

By straightforward calculation, we indeed see that

n∑
i,j=1

θ(T ∗i Tj)(a
∗
i aj) =

n∑
i,j=1

〈(T ∗i Tj)π(a∗i aj)ξ, ξ〉

=

n∑
i,j=1

〈Tjπ(aj)ξ, Tiπ(ai)ξ〉

=

∥∥∥∥∥
n∑
i=1

Tiπ(ai)ξ

∥∥∥∥∥
2

≥ 0.

Hence θ is completely positive.

To prove that θ−1 : E → M ′ is completely positive, let n ≥ 1 and let ϕ = (ϕij)
n
i,j=1 be a positive

element in Mn(E); we must prove that (θ−1)(n)(ϕ) is a positive element of Mn(M ′). We will identify
Mn(B(H)) with B(Hn) in the following, and prove that (θ−1)(n)(ϕ) is positive as an operator in
B(Hn). Let a1, . . . , an ∈ A and de�ne

ξ̃ = (π(a1)ξ, . . . , π(an)ξ) ∈ Hn.
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Noting that θ−1(ϕij) is in M ′ and hence commutes with all π(ai) for all i, j = 1, . . . , n, we �nd that

〈
(θ−1)(n)(ϕ)ξ̃, ξ̃

〉
=

n∑
i,j=1

〈θ−1(ϕij)π(aj)ξ, π(ai)ξ〉

=

n∑
i,j=1

〈θ−1(ϕij)π(a∗i aj)ξ, ξ〉

=

n∑
i,j=1

(θ ◦ θ−1)(ϕij)(T
∗
i Tj)

=

n∑
i,j=1

ϕij(T
∗
i Tj) = ϕ((T ∗i Tj)

n
i,j=1) ≥ 0,

since (a∗i aj)
n
i,j=1 is positive by Lemma 3.1. Because ξ is cyclic for M , it is easy to see that elements

of the form (π(a1)ξ, . . . , π(an)ξ) for a1, . . . , an ∈ A are dense in Hn. Hence (θ−1)(n)(ϕ) ∈ Mn(M ′) is
positive, so θ−1 is completely positive.

Our last result will be concerning the isometric isomorphism connecting duals to preduals of double
duals.

Proposition 3.24. Let A be a C∗-algebra. Then Ω: (A∗∗)∗ → A∗ given by

Ω(ω)(a) = ω(ι(a)), a ∈ A

is an isometric isomorphism, where ι : A → A∗∗ is the inclusion homomorphism. Moreover, Ω and
Ω−1 are completely positive.

Proof. De�ne M = A∗∗. We already know that Ω is an isometric isomorphism from the remarks after
Theorem 2.63. To see that Ω is completely positive, let n ≥ 1 and ω = (ωij)

n
i,j=1 ∈ Mn(M∗) be

positive. For any positive a ∈ Mn(A), we then have that ι(n)(a) is positive by Proposition 3.11, so
ω(ι(n)(a)) is positive. Therefore Ω is completely positive. For the case of Ω−1, assume instead that
ϕ = (ϕij)

n
i,j=1 ∈Mn(A∗) is positive and let T1, . . . , Tn ∈M . For each ϕij ∈ A∗, there is an ωij ∈M∗

such that Ω(ωij) = ϕij . By Kaplansky's density theorem (Theorem 2.33), we can �nd bounded nets
(ι(xiα))α∈Ai of operators in ι(A) such that ι(xiα) → Ti strongly for all i = 1, . . . , n. Note that all the
index sets of these nets may be di�erent; nonetheless, the fact that the nets are bounded gives us a
clear advantage, namely that

ι(xiα)∗ι(xjβ)→ T ∗i Tj

strongly for all i, j = 1, . . . , n. Using Lemma 3.3 and Corollary 2.12, we have for all (α1, . . . , αn) ∈∏n
i=1Ai that

0 ≤
n∑

i,j=1

ϕij(x
i∗
αix

j
αj ) =

n∑
i,j=1

ωij(ι(x
i∗
αi)ι(x

j
αj ))→

n∑
i,j=1

ωij(T
∗
i Tj),

so by Lemma 3.3, (ωij)
n
i,j=1 is positive in Mn(M∗). Hence Ω−1 is completely positive.



CHAPTER 4

INJECTIVE VON NEUMANN ALGEBRAS

We now, after more than 79 pages, hit upon the �rst of the two big concepts that the project is
supposed to be about.

De�nition 4.1. A C∗-algebra A is injective if the following holds: Given C∗-algebras B and B1

with B ⊆ B1 and a completely positive map ϕ : B → A, then there exists a completely positive map
ϕ1 : B1 → A such that ϕ1|B = ϕ, i.e. the following diagram commutes:

B ι //

ϕ

��

B1

ϕ1~~
A

where ι denotes the inclusion.

Note that if one considers the category of C∗-algebras with completely positive maps as the morphisms,
the above notion of injectivity is exactly the property that de�nes the homological algebra version of
injectivity. We will not be using concepts from homological algebra to develop this particular concept,
though.

Whenever one introduces a property for an object, it is a natural question to ask whether isomorphic
objects has the property. Asking whether injectivity is not preserved by isomorphisms is essentially
the same as asking whether Elvis is still alive. (I'm sorry, but he isn't.)

Proposition 4.1. Let A and C be C∗-algebras for which there exists a ∗-isomorphism ρ : A → C. If
A is injective, then C is injective.

Proof. Let B and B1 be C∗-algebras with B ⊆ B1 and let ϕ : B → C be completely positive. Then
ρ−1 ◦ ϕ : B → A is completely positive by Proposition 3.11. Hence there exists a completely positive
map π : B1 → A such that π|B = ρ−1 ◦ϕ, since A is injective. Then ρ ◦ π is a completely positive map
by Proposition 3.11, such that ρ ◦ π|B = ϕ. Therefore C is injective.

4.1 Injectivity and projections of norm one

A von Neumann algebra is injective if it is injective as a C∗-algebra � so no di�erent notion exists
for von Neumann algebras and no confusion can occur. The main aim of this section is to �nd a
criterion equivalent to injectivity for von Neumann algebras, but to get there, we will need to swing
by a downright shocking result, namely Tomiyama's theorem (Theorem 4.5) that does something so
big with so little to the degree that I couldn't believe it at �rst.

We will rely on theory not covered in the project to prove this next theorem. It should be noted that
there are other ways to prove it; [4] does it by means of completely positive maps and the so-called
point-ultraweak topology.

Proposition 4.2. The C∗-algebra B(H) is injective for any Hilbert space H.

Proof. Let B and B1 be C∗-algebras such that B ⊆ B1 and let ϕ : B → B(H) be a completely positive
map. From Stinespring's representation theorem (Theorem 3.16), we obtain a Hilbert space K0 along
with a ∗-representation π0 : B → B(K0) and a bounded linear operator V : H → K0 such that

ϕ(b) = V ∗π0(b)V, b ∈ B.

80
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[9, Proposition 2.10.2] then yields the existence of a Hilbert space K together with an isometric imbed�
ding W : K0 → K and a ∗-representation π : B1 → B(K) such that

π0(b) = W ∗π(b)W, b ∈ B.

Now de�ne ϕ1 : B1 → B(H) by

ϕ1(b) = V ∗W ∗π(b)WV, b ∈ B1.

We claim that ϕ1 is the wanted completely positive extension of ϕ to B1. Clearly ϕ1 is linear and
ϕ1(b) = V ∗(W ∗π(b)W )V = V ∗π0(b)V = ϕ(b) for all b ∈ B. Additionally, for n ≥ 1, a positive matrix
x = (xij) ∈Mn(B1) and ξ = (ξ1, . . . , ξn) ∈ Hn, we have

〈ϕ(n)
1 (x)ξ, ξ〉Hn =

n∑
i,j=1

〈ϕ1(xij)ξj , ξi〉H =

n∑
i,j=1

〈π(xij)WV ξj ,WV ξi〉K = 〈π(n)(x)y, y〉Kn ,

where y = (WV ξ1, . . . ,WV ξn) ∈ Kn. Since π is a ∗-homomorphism, it follows that ϕ(n)
1 (x) is positive,

completing the proof.

The next de�nition will make life a lot easier from now on.

De�nition 4.2. Let A and B be vector spaces with B ⊆ A and E : A → B a surjective linear map. E
is called a projection if E(b) = b for all b ∈ B, or equivalently E ◦ E = E.

Recall that the image of a unital ∗-homomorphism is closed [31, Theorem 11.1].

Corollary 4.3. Let A be a unital C∗-algebra, and let π : A → B(H) be a unital representation of A
on some Hilbert space H. Then the following are equivalent:

(i) π(A) is injective.
(ii) There is a completely positive projection E : B(H)→ π(A).

Proof. For (i)⇒ (ii), assume that π(A) is injective. The identity map on π(A) is a ∗-homomorphism,
so it is completely positive and can therefore be extended by injectivity to a completely positive map
E : B(H)→ π(A) which must also be a projection.

To prove (ii)⇒ (i), assume that E : B(H) → π(A) is a completely positive projection onto π(A). Let
B and B1 be C∗-algebras with B ⊆ B1 and let ϕ : B → π(A) be a completely positive map. Since
π(A) ⊆ B(H), ϕ is also a completely positive map B → B(H). Because B(H) is injective we now
obtain a completely positive map ϕ1 : B1 → B(H) such that ϕ1|B = ϕ. The map E ◦ ϕ1 : B1 → π(A)
is now linear and completely positive. Moreover, for b ∈ B we have E(ϕ1(b)) = E(ϕ(b)) = ϕ(b) since
ϕ maps into π(A), so E ◦ ϕ1 also extends ϕ, and hence π(A) is injective.

Next up before the theorem of the day is the notion of a conditional expectation. I am not sure whether
it has something to do with probability theory, as the name suggests something of the kind.

De�nition 4.3. Let B and A be C∗-algebras such that B ⊆ A. A conditional expectation is a
contractive and completely positive projection E : A → B satisfying

E(bxb′) = bE(x)b′, x ∈ A, b, b′ ∈ B,

i.e. E is a B-bimodule map.

Lemma 4.4. Let A and B be C∗-algebras with B ⊆ A. Moreover, let j : B → A be the inclusion
and let E : A → B be a projection, so that E ◦ j = idB where idB denotes the identity map on B.
Then j∗∗ : B∗∗ → A∗∗ is an injective ∗-homomorphism, j∗∗(B∗∗) is a unital and ultraweakly closed
∗-subalgebra of A∗∗, and j∗∗ ◦ E∗∗ is a projection of A∗∗ onto j∗∗(B∗∗).

Proof. The map j is a homomorphism, so j∗∗ is a ∗-homomorphism by Proposition 3.13 and j∗∗(B∗∗)
is a unital C∗-subalgebra of A∗∗. Note that A∗∗ and j∗∗(B∗∗) may not share the same unit. Moreover,
since (B∗∗)r is ultraweakly compact for all r > 0 by Corollary 2.9, it follows from Corollary 2.61
that (j∗∗(B∗∗))r is ultraweakly compact and hence ultraweakly closed for all r > 0, so j∗∗(B∗∗) is
ultraweakly closed by Theorem 2.11. Since E∗∗ ◦ j∗∗ = idB∗∗ by Proposition 2.64(iii), j∗∗ is injective
and j∗∗ ◦ E∗∗ is a projection of A∗∗ onto j∗∗(B∗∗) ⊆ A∗∗.
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As so it comes: the godsend.

Theorem 4.5 (Tomiyama, 1957). Let B and A be C∗-algebras such that B ⊆ A, and let E : A → B
be a projection of A onto B. Then the following are equivalent:

(i) E is a conditional expectation.
(ii) E is contractive and completely positive.
(iii) E is contractive.

Proof. It is obvious that (i)⇒ (ii)⇒ (iii). Therefore we �only� have to prove that (iii)⇒ (i). Assume
that E is contractive. By Proposition 3.13, the second adjoint map E∗∗ : A∗∗ → B∗∗ is contractive, and
as the inclusion j : B → A is contractive, it follows that j∗∗ ◦E∗∗ is contractive as well. By Lemma 4.4,
j∗∗ ◦ E∗∗ is a projection of M = A∗∗ onto the unital ultraweakly closed ∗-subalgebra N = j∗∗(B∗∗).
Assuming that we have proved that j∗∗ ◦ E∗∗ is a conditional expectation, then if ιA : A → A∗∗ and
ιB : B → B∗∗ denotes the canonical inclusions into the double duals, we have ιA ◦ j = j∗∗ ◦ ιB and
ιB ◦ E = E∗∗ ◦ ιA, and therefore for all x ∈ A and b, b′ ∈ B

j∗∗ ◦ ιB(E(bxb′)) = j∗∗ ◦ E∗∗(ιA(j(b)xj(b′)))

= j∗∗ ◦ E∗∗(ιA(j(b))ιA(x)ιA(j(b′)))

= ιA(j(b)) [j∗∗ ◦ E∗∗(ιA(x))] ιA(j(b′))

= j∗∗ [ιB(b)ιB(E(x))ιB(b′)]

= j∗∗(ιB(bE(x)b′)),

so since j∗∗ and ιB are injective, it follows that E(bxb′) = bE(x)b′. Moreover, as ιA and the inverses
of j∗∗ : B∗∗ → N and ιB : B → ιB(B) are ∗-homomorphisms, it follows that

E = ι−1
B ◦ (j∗∗)−1 ◦ j∗∗ ◦ (ιB ◦ E) = (ι−1

B ◦ j
∗∗)−1 ◦ (j∗∗ ◦ E∗∗) ◦ ιA

is completely positive. Hence to prove (iii)⇒ (i), it su�ces to prove the implication for a projection
E : M → N where M is a von Neumann algebra and N is an ultraweakly closed unital ∗-subalgebra
of N (not necessarily sharing the same unit). Note that in the above case, B∗∗ is the norm closure
of the linear span of its projections, so since j∗∗ is a ∗-homomorphism and hence also contractive,
the same holds for N . We can therefore also assume that the linear span of the projections in N is
norm-dense in N .

Assume now that E : M → N is a contractive projection. To prove that E is an N -bimodule map, it
su�ces to check that E(pxp′) = pE(x)p′ for x ∈M and projections p, p′ ∈ N , by the aforementioned
assumption that the linear span of the projections of N is norm-dense in N and the fact that E is
contractive. Fix x ∈M . For any projection p ∈ B, let p⊥ = 1M − p. Then we must have

pE(p⊥x) = E(pE(p⊥x)).

For any t ∈ R, then if y = p⊥x+ tpE(p⊥x) we see that

y∗y = (x∗p⊥x+ tE(p⊥x)∗p)(p⊥x+ tpE(p⊥x)) = x∗p⊥x+ t2E(p⊥x)∗pE(p⊥x).

Hence

‖y‖2 = ‖y∗y‖ = ‖x∗p⊥x+ t2E(p⊥x)∗pE(p⊥x)‖
≤ ‖x∗p⊥x‖+ ‖t2E(p⊥x)∗pE(p⊥x)‖
= ‖p⊥x‖2 + t2‖pE(p⊥x)‖2,

so

(1 + t)2‖pE(p⊥x)‖2 = ‖pE(p⊥x) + tp(pE(p⊥x))‖2

= ‖pE(p⊥x+ tpE(p⊥x))‖2

≤ ‖y‖2

≤ ‖p⊥x‖2 + t2‖pE(p⊥x)‖2.
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Hence (2t+ 1)‖pE(p⊥x)‖2 ≤ ‖p⊥x‖2 for all t ∈ R, implying pE(p⊥x) = 0. Letting 1M and 1N denote
the units of M and N respectively, then for p = 1N , we see that E(1⊥N x) = 1N E(1⊥N x) = 0. For
any projection p ∈ N , then because

(1N − p)⊥ = 1M − 1N + p = 1⊥N + p,

we also see that

0 = (1N − p)E((1N − p)⊥x) = (1N − p)E((1⊥N + p)x) = (1N − p)E(px),

so E(px) = pE(px). This �nally implies

E(px) = pE(px) = pE(x− p⊥x) = pE(x)− pE(p⊥x) = pE(x).

Similarly one shows for any projection p ∈ N and x ∈M that E(xp⊥)p = 0, implying E(x1⊥N ) = 0,
E(xp) = E(xp)p and �nally E(xp) = E(x)p. Hence

E(pxp′) = pE(xp′) = pE(x)p′

for all x ∈M and projections p, p′ ∈ N , so E is an N -bimodule map.

It only remains to show that E is completely positive. Since yE(1A) = E(1A)y = E(y) = y for
all y ∈ N , it follows that E(1A) = 1B. Therefore E is a unital contraction and hence positive by
Proposition 3.10. Let n ≥ 1. If x ∈Mn(M ) is positive and b = (b1, . . . , bn) ∈Mn,1(N ), then

b∗E(n)(x)b =

n∑
i,j=1

b∗iE(xij)bj =

n∑
i,j=1

E(b∗i xijbj) = E

 n∑
i,j=1

b∗i xijbj

 ≥ 0

by Lemma 3.2. Hence by the same lemma, E(n)(x) is positive, so E is completely positive. This
concludes the proof.

I might note that the above proof of Tomiyama's theorem is the most precise and thorough one that I
can think of; it combines the proof contained in [4] with the humility that the theorem deserves. (In
other words, if we want it to be true we'd better make sure that the proof is correct.) Nonetheless, it
yields the following important corollary.

Corollary 4.6. Let H be a Hilbert space and let M ⊆ B(H) be a von Neumann algebra. Then the
following are equivalent:

(i) M is injective.

(ii) There is a projection E : B(H)→M of B(H) onto M with ‖E‖ = 1.

Proof. Let π : M → B(H) denote the inclusion. Assuming (i), then Corollary 4.3 used with π yields
that there is a completely positive projection E of B(H) onto π(M ) = M . By Proposition 3.9,
‖E‖ = ‖E(1H)‖ = ‖1H‖ = 1. If (ii) holds, then E is completely positive by Tomiyama's theorem
(Theorem 4.5), so by Corollary 4.3 yields that π(M ) = M is injective and hence we obtain (i).

The above result does not rely of M being a von Neumann algebra � any C∗-subalgebra of B(H) will
do just �ne. As we shall almost exclusively be working with von Neumann algebras from now on, there
is really no reason to deal with this generality and much less with the original de�nition of injectivity.
From now on whenever we state or assume that a von Neumann algebra M ⊆ B(H) is injective, we
assume that

M satis�es condition (ii) of Corollary 4.6.

Having done all necessary preliminary work, let us construct some injective von Neumann algebras!
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4.2 The construction of injective von Neumann algebras

There is no point in introducing all the upcoming results one at a time, so su�ce to say that we
will investigate whether injectivity is preserved for some of the most typical von Neumann algebra
constructions.

Proposition 4.7. Let (Mi)i∈I be a family of von Neumann algebras with Mi ⊆ B(Hi) for Hilbert
spaces (Hi)i∈I . Then M =

⊕
i∈I Mi is injective if and only if Mi is injective for all i ∈ I.

Proof. PuttingH =
⊕

i∈I Hi, and using the natural injections ιi : Hi → H and projections πi : H → Hi
de�ned after Proposition 0.4, then Pi = ιiι

∗
i is the projection onto the closed subspace ιi(Hi) of H for

all i ∈ I. Clearly ιiB(Hi)πi ⊆ B(H) and ιiMiπi ⊆M and we shall identify Mi with πiM ιi (see page
xi).

Assume �rst that M is injective; then there exists a projection E : B(H) → M of norm 1. For any
i ∈ I, de�ne Ei : B(Hi) → Mi by Ei(T ) = πiE(ιiTπi)ιi for T ∈ B(Hi). Then Ei(T ) ∈ M for all
T ∈ B(H), ‖Ei(T )‖ ≤ ‖E(ιiTπi)‖ ≤ ‖T‖ and for T ∈M , then ιiTπi ∈M , so Ei(T ) = πiιiTπiιi = T .
Therefore each Ei is a projection of norm 1 of B(Hi) onto Mi.

If Mi is injective for all i ∈ I, we have projections Ei : B(Hi) → Mi of norm 1 for all i ∈ I. De�ne
E : B(H)→M by

E(T ) = (Ei(πiTιi))i∈I , T ∈ B(H).

To see that E is well-de�ned, note that for all i ∈ I and all T ∈ B(H), then πiTιi ∈ B(Hi), so
Ei(πiTιi) ∈ Mi. Moreover, as Ei(πiTιi) is bounded by ‖T‖, it follows that E(T ) is a well-de�ned
bounded operator in M . It follows immediately that ‖E‖ ≤ 1 and if T ∈M , then T = (Ti)i∈I where
Ti ∈Mi for all i ∈ I; therefore since πiTιi = Ti it follows that Ei(πiTιi) = Ei(Ti) = Ti, so E(T ) = T .
Therefore E is a projection of norm 1.

Proposition 4.8. Let M ⊆ B(H) be an injective von Neumann algebra and let P ∈M be a projection.
Then MP is injective.

Proof. Recall that MP consists of all operators in B(P (H)) of the form PT |P (H) for T ∈ M . Let
E : B(H)→M be a projection of norm 1 and de�ne E′ : B(P (H))→MP by

E′(T ) = PE(PTP )|P (H),

where PTP is seen as an operator on H. First of all, for all T ∈ B(P (H)), we have E′(T ) ∈MP by
the de�nition of E and MP . Clearly ‖E′‖ ≤ 1, as we have ‖PTPξ‖ ≤ ‖T‖‖Pξ‖ and thus

‖E(PTP )‖ ≤ ‖PTP‖ ≤ ‖T‖, T ∈ B(P (H)).

Finally, if T ∈ MP , then T = PS|P (H) for some S ∈ M , so PTPξ = PSPξ for all ξ ∈ H. Hence
PTP = PSP ∈M , so

E′(T ) = PE(PTP )|P (H) = PE(PSP )|P (H) = PS|P (H) = T

since E is a projection onto M . Therefore E′ is a projection of norm 1, so MP is injective.

Corollary 4.9. Let M and N be von Neumann algebras and let ϕ : M → N be a normal surjective
∗-homomorphism. Then M is injective if and only if kerϕ and N are injective.

Proof. This follows from Propositions 2.53, 4.7 and 4.1.

Corollary 4.10. Let M be a von Neumann algebra. Then

(i) If π : M → B(H) is a normal representation and M is injective, then π(M ) is injective.

(ii) If (πα)α∈A is a separating family of normal representations of M such that πα(M ) is injective
for all α ∈ A, then M is injective.
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Proof. (i) is a consequence of Corollary 4.9. For (ii), let (Pβ)β∈B be a maximal family of orthogonal
central projections in M such that there for all β ∈ B exists an α(β) ∈ A such that πα(β) is an
injective map on MPβ . De�ne P =

∑
β∈B Pβ . Assuming for contradiction that P 6= 1M , there exists

a non-zero T ∈M such that TP = 0. Because (πα)α∈A was separating, there exists α ∈ A such that
πα(T ) 6= 0. Note now that there exists a central projection P ′ ∈M such that

kerπα = M (1M − P ′)

by Proposition 2.32. Then T (1M − P )P ′ = TP ′. Assuming that TP ′ = 0 yields

πα(T ) = πα(TP ′) + πα(T (1M − P ′)) = 0,

a contradiction. Hence T (1M − P )P ′ 6= 0 so P ′′ = (1M − P )P ′ is a non-zero central projection.
Moreover, πα is injective on MP ′′; indeed, if S ∈MP ′′ satis�es πα(S) = 0, then S = T (1M − P ′) for
some T ∈M , but then

S = S(1M − P )P ′ = T (1M − P ′)(1M − P )P ′ = 0.

Lastly, as P ′′Pβ = 0 for all β ∈ B, we obtain a contradiction of the maximality of the family (Pβ)β∈B ,
so P = 1M , and hence

M ∼=
⊕
β∈B

MPβ

by Proposition 2.19. Since MPβ ∼= πα(β)(MPβ) = πα(β)(M )πα(β)(Pβ) by injectivity of each πα(β)

and πα(β)(eβ) is central in the injective von Neumann algebra πα(β)(M ), it follows that all MPβ are
injective from Propositions 2.17 and 4.8. Hence M is injective by Proposition 4.7.

For our next result we will prepare ourselves by de�ning some helpful maps. Let M and N be von
Neumann algebras. For any ω ∈ M∗ and ϕ ∈ N∗, ω ⊗ ϕ denotes the ultraweakly continous linear
functional on M ⊗N de�ned on page 76 that uniquely satis�es

(ω ⊗ ϕ)(S ⊗ S′) = ω(S)ϕ(S′), S ∈M , S′ ∈ N .

For �xed ω ∈M∗, T ∈M ⊗N , let fω,T : N∗ → C be given by

fω,T (ϕ) = (ω ⊗ ϕ)(T ).

As ‖fω,T (ϕ)‖ ≤ ‖ω ⊗ ϕ‖‖T‖ = ‖ω‖‖ϕ‖‖T‖, each fω,T is a bounded linear functional on N∗ and
by Theorem 2.7 hence corresponds to a unique element Rω(T ) of N . Likewise, one obtains a map
M ⊗N →M , T 7→ Lϕ(T ) for each ϕ ∈M∗.

Lemma 4.11. Rω : M ⊗N → N and Lϕ : M ⊗N → M as de�ned above are bounded linear
mappings with ‖Rω‖ = ‖ω‖ and ‖Lϕ‖ = ‖ϕ‖. Moreover, they satisfy

Rω

(
n∑
i=1

Si ⊗ Ti

)
=

n∑
i=1

ω(Si)Ti, Lϕ

(
n∑
i=1

Si ⊗ Ti

)
=

n∑
i=1

ϕ(Ti)Si, Si ∈M , Ti ∈ N .

Proof. Rω is clearly a linear map; indeed, if λ, µ ∈ C and S, T ∈M ⊗N , then

fω,λS+µT (ϕ) = (ω ⊗ ϕ)(λS + µT ) = λ(ω ⊗ ϕ)(S) + µ(ω ⊗ ϕ)(T ) = (λfω,S + µfω,T )(ϕ)

for all ϕ ∈ N∗, so by uniqueness and linearity of the canonical identi�cation Λ: N → (N∗)∗ (again
Theorem 2.7) we have

Rω(λS + µT ) = Λ−1(λfω,S + µfω,T ) = λRω(S) + µRω(T ).

For all ϕ ∈ N∗ and T ∈M ⊗N , we have

ϕ(Rω(T )) = ϕ(Λ−1(fω,T )) = Λ(Λ−1(fω,T ))(ϕ) = fω,T (ϕ) = (ω ⊗ ϕ)(T ),

so for ϕ ∈ N∗ we have

ϕ

(
Rω

(
n∑
i=1

Si ⊗ Ti

))
= (ω × ϕ)

(
n∑
i=1

Si ⊗ Ti

)
=

n∑
i=1

ω(Si)ϕ(Ti) = ϕ

(
n∑
i=1

ω(Si)Ti

)
.
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Since all ultraweakly continuous linear functionals on N agree on the two vectors, they must be equal;
indeed, if N ⊆ B(K) and it holds for two operators S, T ∈ N that ϕ(S) = ϕ(T ) for all ϕ ∈ N∗, then
in particular Proposition 2.2 yields that for all vectors ξ, η ∈ K we have 〈Sξ, η〉 = 〈Tξ, η〉 and hence
S = T .

Using Lemma 1.24, one easily sees that

‖S‖ = sup{|ϕ(S)| |ϕ ∈ N∗, ‖ϕ‖ ≤ 1}, S ∈ N .

Therefore for all T ∈ M ⊗N and ϕ ∈ N∗ we see that |ϕ(Rω(T ))| = |(ω ⊗ ϕ)(T )| ≤ ‖ω‖‖ϕ‖‖T‖,
implying ‖Rω(T )‖ ≤ ‖ω‖‖T‖ and thus ‖Rω‖ ≤ ‖ω‖. For the converse inequality, note that for all
S ∈M we have

|ω(S)| = ‖ω(S)1N ‖ = ‖Rω(S ⊗ 1N )‖ ≤ ‖Rω‖‖S ⊗ 1N ‖ = ‖Rω‖‖S‖,

implying ‖ω‖ ≤ ‖Rω‖ and hence equality. The results for Lϕ follow similarly.

As one might expect, we will now investigate a statement about injectivity for the von Neumann
algebra tensor product.

Proposition 4.12. Let M ⊆ B(H) and N ⊆ B(K) be von Neumann algebras. Then the von Neumann
algebra M ⊗N ⊆ B(H⊗K) is injective if and only if M and N are injective.

Proof. Assume �rst that M ⊗N is injective and let E : B(H ⊗ K) → M ⊗N be a projection of
norm 1. Let ω ∈ M∗ be an ultraweakly continuous state, and let θ : B(K) → C1H ⊗ B(K) be the
ampli�cation. De�ne E′ : B(K)→ N by E′ = Rω ◦ E ◦ θ. Then for T ∈ N , we have

E′(T ) = Rϕ(E(1H ⊗ T )) = Rϕ(1H ⊗ T ) = ϕ(1H)T = T.

As Rω, E and θ have norm 1, it follows that ‖E′‖ ≤ 1, and as E′ is isometric on N , it follows that
E′ has norm 1. Therefore N is injective. A similar reasoning with an ultraweakly continuous state
ϕ ∈ N∗ proves that M is injective.

The converse statement is not as easy. Assume that M and N are injective and let E1 : B(H)→M
and E2 : B(K) → N be projections of norm 1. Let (Pi)i∈I be minimal orthogonal projections in
B(K) corresponding to an orthonormal basis for K and for �nite subsets J of I, de�ne PJ ∈ B(K) by
PJ =

∑
i∈J Pi and de�ne P̃J ∈ B(H⊗K) by P̃J = 1H ⊗ PJ . As PJ is a projection, it follows that P̃J

is a projection in B(H⊗K) for all �nite subsets J of I. The set J of �nite subsets of I is of course a
directed set, ordered by inclusion, so (PJ)J∈J and (P̃J)J∈J are nets. Since PJ → 1H strongly and thus
ultraweakly by Proposition 2.1, it follows from Proposition 2.50 that P̃J → 1H⊗K ultraweakly. Hence
for all S ∈ B(H)⊗B(K), we have

P̃JSP̃J → S

ultraweakly on B(H)⊗B(K). For any J ∈ J, Propositions 2.20, 2.17 and 1.34 yield that

(B(H)⊗B(K))P̃J = B(H)⊗B(K)PJ = B(H)⊗B(PJ(K)) = B(H)�B(PJ(K))

because PJ(K) is �nite-dimensional.

For J ∈ J de�ne EJ : B(H) � B(PJ(K)) → M � B(PJ(K)) by EJ = E1 � 1J where 1J denotes the
identity map B(PJ(K)) → B(PJ(K)). EJ is then clearly a projection of norm 1, and helps de�ne a
map ẼJ : B(H)⊗B(K)→M �B(PJ(K)) by

ẼJ(T ) = EJ(P̃JT P̃J), T ∈ B(H)⊗B(K),

where P̃JT P̃J is the operator P̃JT |H⊗PJ (K). ẼJ is then also a projection of norm 1.

For any J ∈ J, any operator S ∈ M � B(PJ(K)) is of the form S =
∑n
i=1 Si ⊗ Ti for operators

S1, . . . , Sn ∈M and T1, . . . , Tn ∈ B(PJ(K)). Because any Ti can be extended naturally to an operator
on K, just by de�ning it to be 0 on the orthogonal complement of PJ(K), it follows that S can be
seen as contained in M �B(K) ⊆M ⊗B(K). Since this operation is clearly contractive, then for any
T ∈ B(H)⊗B(K) we will have that the net (ẼJ(T ))J∈J is contained in the closed ball of M ⊗B(K) of
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radius ‖T‖. Since this ball is ultraweakly compact by Corollary 2.9, the net (ẼJ(T ))J∈J has a cluster
point which we will denote by Ẽ1(T ). Note that the net can only have one cluster point: indeed, for
J, J ′ ∈ J with J ⊆ J ′, we can naturally view P̃J as an operator in M �B(PJ′(K)), so

P̃J ẼJ′(T )P̃J = P̃JEJ′(P̃J′T P̃J′)P̃J

= EJ′(P̃JT P̃J)

= EJ(P̃JT P̃J)

= ẼJ(T )

where we used Tomiyama's theorem at the second equality. As there is a subnet (ẼS(T ))S∈S of
(ẼJ(T ))J∈J converging ultraweakly to Ẽ1(T ) by compactness of the aforementioned closed ball, we
can derive another subnet (ẼS(T ))S′∈S ′ S ′ ⊆ S by de�ning S ′ = {S ∈ S | J ⊆ S}. This subnet
also converges ultraweakly to Ẽ1(T ). By considering the above equalities for J ′ ∈ S ′ we �nd that
ẼJ(T ) = P̃J Ẽ1(T )P̃J , but we have also found that ẼJ(T ) = P̃J Ẽ1(T )P̃J → Ẽ1(T ) ultraweakly.
Therefore Ẽ1(T ) is uniquely determined by the elements ẼJ(T ) as the ultraweak topology is Hausdor�,
and we thus obtain a well-de�ned map

Ẽ1 : B(H)⊗B(K)→M ⊗B(K).

Ẽ1 is in fact linear, since for λ1, λ2 ∈ C and T1, T2 ∈ B(H)⊗B(K) we have

Ẽ1(λ1T1 + λ2T2) = lim
J∈J

ẼJ(λ1T1 + λ2T2) = λ1 lim
J∈J

ẼJ(T1) + λ2 lim
J∈J

ẼJ(T2) = λ1Ẽ1(T1) + λ2Ẽ1(T2),

where the limits are in the ultraweak topology. Since ‖Ẽ1(T )‖ ≤ ‖T‖ by construction, it follows that
‖Ẽ1‖ ≤ 1. Moreover, for T ∈M ⊗B(K), we have

ẼJ(T ) = EJ(P̃JT P̃J) = P̃JT P̃J → T

ultraweakly, so Ẽ1(T ) = T and hence Ẽ1 is a projection of norm 1 onto M ⊗B(K). Moreover,

ẼJ(S ⊗ T ) = EJ(P̃J(S ⊗ T )P̃J) = EJ(S ⊗ PJTPJ) = E1(S)⊗ PJTPJ ,

so Ẽ1(S ⊗ T ) = E1(S)⊗ T for all S ∈M , T ∈ N . Similarly we can de�ne a projection

Ẽ2 : B(H)⊗B(K)→ B(H)⊗N

of norm 1, satisfying Ẽ2(S ⊗ T ) = S ⊗ E2(T ) for all S ∈M , T ∈ N .

Now let S ∈M ⊗B(K) and T ∈ (M ⊗B(K))′ = M ′ � C1K ⊆ B(H)⊗N . Then

Ẽ2(S)T = Ẽ2(ST ) = Ẽ2(TS) = TẼ2(S)

by Tomiyama's theorem, so Ẽ2(S) ∈ (M ⊗B(K))′′ = M ⊗B(K). Therefore, for S ∈ M ⊗B(K), we
have

Ẽ2(S) ∈M ⊗B(K) ∩B(H)⊗N = ((M ′ ⊗ C1K) ∪ (C1K ⊗M ′))′ = (M ′⊗N ′)′ = M ⊗N ,

using the so-called commutation theorem for von Neumann algebra tensor products [15, Theorem
11.2.16]. We can therefore de�ne E : B(H ⊗ K) → M ⊗N by E = Ẽ2 ◦ Ẽ1. E is linear, and
since Ẽ1 and Ẽ2 both have norm 1, ‖E‖ ≤ 1. Moreover, for T ∈ M ⊗N , note that Ẽ1(T ) = T and
Ẽ2(T ) = T , so E(T ) = T , and therfore E is a projection of B(H⊗K) onto M ⊗N of norm 1. This
proves that M ⊗N is injective.

What we have done now is made sure that certain types of �new� von Neumann algebras inherit
injectivity from �old� ones, and we will in the next section make a digression that seems very much
out of place at the moment. One reason that we will even consider looking into the next couple of
von Neumann algebra concepts is that we can extract injectivity results somewhat similar to the ones
proved in this section, but the main reason is because of the next chapter: some of the next two sections
become absolutely indispensable when we will attempt to prove the main theorem. For the curious,
Theorem 5.18 is the place to look...
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4.3 Continuous crossed products

However, the fact that the results of this and the next section depend on group theory (of all things)
is a bit surprising. This section will contain only one proof, a self-made one; the rest can be found in
[8] (a book I can only recommend, as the writing style is very clear and the material is self-contained).
For the rest of the project we will only need the de�nitions given herein, along with a minimal amount
of the theorems.

The �rst two de�nitions are probably familiar to any C∗-algebraist; nonetheless we include them here
for completion.

De�nition 4.4. Let A be a unital C∗-algebra. An ∗-automorphism of A is a unital ∗-isomorphism
ϕ : A → A. The group of ∗-automorphisms of A is denoted by Aut(A).

De�nition 4.5. Let Γ be a group and let H be a Hilbert space. A unitary representation of Γ is a
group homomorphism Γ→ U(H).

The main point of this section is to create a new von Neumann algebra from a given von Neumann
algebra M , a group Γ and a homomorphism Γ → Aut(M ). The following de�nition is where it all
starts.

De�nition 4.6. Let M be a von Neumann algebra acting on a Hilbert space H and let Γ be a locally
compact group. A continuous action of Γ on M is a group homomorphism α : Γ → Aut(M ) such
that for any T ∈M , the map s 7→ αs(T ) := α(s)(T ) is continuous if M is considered with the strong
operator topology. The fact that α is a homomorphism is re�ected in the equality

αs ◦ αt = αst, s, t ∈ Γ.

In this case (M ,Γ, α) is called a covariant system.

In the following, we will let Γ be a locally compact group, M ⊆ B(H) a von Neumann algebra and α
a continuous action of Γ on M . We will denote the space of continuous functions on Γ with compact
support and values in H by Cc(Γ,H). Hence a f : Γ → H is contained in Cc(Γ,H) if and only if it
satis�es the following criteria:

(i) If si → s in Γ, then f(si)→ f(s) in H.
(ii) The set {s ∈ Γ | f(s) 6= 0} has compact closure.

Letting ds be a �xed Haar measure on Γ, we equip Cc(Γ,H) with an inner product given by

〈f, g〉 =

∫
Γ

〈f(s), g(s)〉ds, f, g ∈ Cc(Γ,H)

and we let L2(Γ,H) denote the completion with respect to this inner product. One important fact
about L2(Γ,H) is the following.

Proposition 4.13. There is an isomorphism of Hilbert spaces U : H⊗ L2(Γ)→ L2(Γ,H) satisfying

U(ξ ⊗ f)(s) = f(s)ξ, ξ ∈ H, f ∈ Cc(Γ), s ∈ Γ,

allowing us to identify H⊗ L2(Γ) with L2(Γ,H).

Proof. See [8, Proposition I.2.2].

We now de�ne two types of maps essential for constructing the continuous crossed product:

q For T ∈M we de�ne a bounded linear operator π(T ) on the Hilbert space L2(Γ,H) by

(π(T )f)(s) = αs−1(T )f(s), f ∈ Cc(Γ,H), s ∈ Γ.

π : M → B(L2(Γ,H)) is a faithful, normal representation of M [8, Proposition I.2.5].
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q For t ∈ Γ, we can de�ne a bounded linear operator λ(s) on L2(Γ,H) by

(λ(t)f)(s) = f(t−1s), f ∈ Cc(Γ,H), s ∈ Γ.

λ : Γ→ B(L2(Γ,H)) is then a strongly continuous unitary representation of Γ. [8, Proposition I.2.8]

An important property of these two map types is that they complement each other quite well, as seen
in the next lemma.

Lemma 4.14. For all T ∈M and t ∈ Γ, we have

λ(t)π(T )λ(t)∗ = π(αt(T )).

This implies that the set of �nite linear combinations of operators of the form π(T )λ(t) with T ∈ M
and t ∈ Γ form a unital ∗-algebra.

Proof. See [8, Lemma I.2.9].

It follows that the double commutant of the above mentioned ∗-algebra is a von Neumann algebra �
the one we want, in fact.

De�nition 4.7. Using the above notation, the (continuous) crossed product R(M , αt) of M by the
continuous action α of Γ is the von Neumann algebra in B(L2(Γ,H)) generated by the set

{π(T ), λ(t) |T ∈M , t ∈ Γ},

i.e. R(M , αt) = {π(T ), λ(t) |T ∈M , t ∈ Γ}′′.

Because of Lemma 4.14 and von Neumann's density theorem, R(M , αt) is also the strong (or weak,
ultraweak or ultrastrong) closure of the ∗-algebra of linear combinations of the operators π(T )λ(t) for
T ∈M and t ∈ Γ.

Lemma 4.15. Let M ⊆ B(H) be a von Neumann algebra and let Γ be an locally compact group acting
continuously on M by the homomorphism θ : Γ→ Aut(M ). Then the set

M Γ
θ = {T ∈M | θs(T ) = T for all s ∈ Γ}

is a von Neumann subalgebra of M , called the �xpoint algebra for the action of Γ on M .

Proof. As θs(I) = I by assumption, M Γ
θ is non-empty and contains the identity operator. It is now

easily seen that M Γ
θ is a ∗-subalgebra of M . If T ∈ M and Tα → T strongly for a net (Tα)α∈A in

M Γ
θ , then

Tα = θs(Tα)→ θs(T )

for all g ∈ Γ, so T = θs(T ) for all g ∈ Γ and hence M Γ
θ is strongly closed.

Proposition 4.16. Let a : Γ→ U(H) be a strongly continuous unitary representation with as := a(s)
for all s ∈ Γ, satisfying

αs(T ) = asTa
∗
s, T ∈M , s ∈ Γ.

De�ning a unitary operator W ∈ U(L2(Γ,H)) by

(Wf)(s) = asf(s), f ∈ Cc(Γ,H), s ∈ Γ,

we obtain
π(T ) = W ∗(T ⊗ 1H)W, λ(s) = W ∗(as ⊗ λ(s))W, T ∈M , s ∈ Γ.

In particular R(M , αt) is spatially isomorphic to the von Neumann algebra acting on H ⊗ L2(Γ)
generated by the operators {T ⊗ 1, as ⊗ λs |T ∈M , s ∈ Γ}.

Proof. See [8, Proposition I.2.12].

Corollary 4.17. R(M , αt) embeds into M ⊗B(L2(Γ)) ⊆ B(H⊗ L2(Γ)).

Proof. See [8, Lemma I.3.1].
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Letting ∆ denote the modular function of Γ, we de�ne the right translation ρt : L2(Γ)→ L2(Γ) by

ρt(f)(s) = ∆(t)1/2f(st), f ∈ L2(Γ), s, t ∈ Γ.

We then de�ne adρt : B(L2(Γ))→ B(L2(Γ)) by

adρt(T ) = ρtTρ
∗
t , T ∈ B(L2(Γ)).

For t ∈ Γ, de�ne θt on M ⊗B(L2(Γ)) by θt = αt ⊗ adρt. Then t 7→ θt is a continuous action of Γ on
M ⊗B(L2(Γ)) [8, Proposition I.3.3]. Furthermore, the following theorem holds:

Theorem 4.18. With θt as above, we have

R(M , αt) = {T ∈M ⊗B(L2(Γ)) | θt(T ) = T for all t ∈ Γ}.

Hence R(M , αt) is the �xpoint algebra of a continuous action of Γ on M ⊗B(L2(Γ)).

Proof. See [8, Theorem I.3.11].

In order for the next theorem to make sense, we take an opportunity to remind the reader of the
notions of �niteness and semi�niteness for von Neumann algebras.

De�nition 4.8. Let M be a von Neumann algebra. For two projections P,Q ∈M we say that P ∼ Q
if there exists a partial isometry V ∈M such that P = V ∗V and Q = V V ∗.

(i) A projection P ∈M is �nite if P ∼ Q and Q ≤ P imply Q = P .
(ii) A projection P ∈M is semi�nite if there for any non-zero projection Q ∈M with Q ≤ P exists

a �nite non-zero projection R ∈M with R ≤ Q.
(iii) M is �nite if 1M is �nite.
(iv) M is semi�nite if 1M is semi�nite.

One is advised to consult [10] or [1] for results on semi�niteness and �niteness, as we will do in some
of the proofs contained in Chapter 5.

Assume now that M is a σ-�nite von Neumann algebra and let ω ∈M∗ be a faithful normal state by
Proposition 2.58. By Tomita-Takesaki theory, there exists a strongly continuous one-parameter group
(σωt )t∈R of ∗-automorphisms of M � that is, t 7→ σωt is a homomorphism R → Aut(M ) and if ti → t
in R implies σωti(T ) → σωt (T ) for all T ∈ M � that is uniquely characterized by satisfying the K. M.
S. condition: namely that for any given S, T ∈M , there exists a complex-valued bounded continuous
function F de�ned on {z ∈ C | 0 ≤ Imz ≤ 1} that is analytic in the interior and satis�es

F (t) = ω(σωt (S)T ), F (t+ i) = ω(Tσωt (S)), t ∈ R.

The map t 7→ σωt is a continuous action of R on M . (σωt )t∈R is called the modular automorphism
group associated to ω, and the action t 7→ σωt is called the modular action associated to ω, yielding the
continuous crossed product R(M , σωt ).

Because of Connes' cocycle Radon-Nikodym theorem and a theorem by Takesaki [8, Theorems II.2.2
and II.2.3], R(M , σωt ) is in fact up to isomorphism independent of the faithful normal state that the
construction started with. For further comments, see [8, pp. 34-36]. Hence it is possible to write
R(M , σt) instead of specifying a state ω, but we will not do this.

The reason we introduce this speci�c crossed product is the following theorem that we will state without
proof.

Theorem 4.19. Let M be a σ-�nite von Neumann algebra with a faithful normal state ω ∈M∗. Then
R(M , σωt ) is a semi�nite von Neumann algebra acting on L2(R,H) ∼= H⊗ L2(R).

Proof. See [8, Theorem II.3.5].

For us, the most important fact about R(M , σt) is that it provides a connection between a σ-�nite
von Neumann algebra M and a semi�nite one; this is in fact almost enough to go where Chapter 5

will take us.
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4.4 Amenable locally compact groups

However, before we go on to Chapter 5, we need to make a short stop in the beautiful world of amenabil�
ity. Amenability is a property for locally compact groups that generalizes �nite groups and abelian
groups by introducing an function that makes it possible to take �averages� on bounded functions and
stays invariant under translation by group elements. For instance, if Γ is a �nite group it is easy to
take the average of a bounded function f : Γ→ C, namely

m(f) =
1

|Γ|
∑
s∈Γ

f(s).

As
∑
s∈Γ f(s) =

∑
s∈Γ f(t−1s) for all t ∈ Γ in this case, one obtains a function m : `∞(Γ) → C whose

values is not changed by translation by any element of Γ. Our de�nition of amenability will generalize
this.

De�nition 4.9. Let Γ be a locally compact group with Haar measure µ. A measurable function
f : Γ→ C is essentially bounded if there exists a non-negative real number M such that the set

{g ∈ Γ | |f(g)| > M}

has measure zero under µ. L∞(Γ) denotes the Banach space of complex measurable essentially bounded
functions Γ→ C with the norm

‖f‖∞ = inf {M ≥ 0 |µ({s ∈ Γ | |f(s)| > M}) = 0} , f ∈ L∞(Γ).

A mean on L∞(Γ) is a state on L∞(Γ), i.e m(1) = 1 and m(f) ≥ 0 for any non-negative function
f ∈ L∞(Γ). For any s ∈ Γ, the left translation operator with respect to s is the map τs : L∞(Γ)→ L∞(Γ)
given by

τs(f)(t) = f(s−1t), f ∈ L∞(Γ), t ∈ Γ.

Note that the left translation operator is well-de�ned by left invariance of the Haar measure. A mean
m on L∞(Γ) is said to be left invariant if it satis�es the equality m ◦ τs = m for all s ∈ Γ. If L∞(Γ)
has a left invariant mean, Γ is said to be amenable.

If Γ is a locally compact group with a mean m on L∞(Γ), then it is customary for any f ∈ L∞(Γ) to
write

m(f) =

∫
Γ

f(s)dm(s).

Hence ∫
Γ

λ dm(s) = λ and

∫
Γ

f(s)dm(s) ≥ 0, λ ∈ C, f ∈ L∞(Γ)+.

The above integral is also linear, as

λ1

∫
Γ

f1(s)dm(s) + λ2

∫
Γ

f2(s)dm(s) = m(λ1f1 + λ2f2) =

∫
Γ

(λ1f1(s) + λ2f2(s))dm(s)

for all f1, f2 ∈ L∞(Γ) and λ1, λ2 ∈ C. The condition that m is left invariant is re�ected in the equality∫
Γ

f(s−1
0 s) dm(s) =

∫
Γ

f(s) dm(s), f ∈ L∞(Γ), s0 ∈ Γ.

Since m is a state, it is also contractive and hence we have∣∣∣∣∫
Γ

f(s)dm(s)

∣∣∣∣ ≤ ‖f‖∞, f ∈ L∞(Γ).

If Γ is a discrete group, then a function f : Γ → C is essentially bounded if and only if it is bounded,
and in this case it is customary to denote L∞(Γ) by `∞(Γ).

For our purposes, we will need to know that a very well-known group is amenable.

Proposition 4.20. The locally compact group (R,+) with Lebesgue measure is an amenable locally
compact group.
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Proof. The Lebesgue measure on R is a Haar measure. For n ≥ 1, de�ne mn : L∞(R)→ C by

mn(f) =
1

2n

∫ n

−n
f(t)dt, f ∈ L∞(R).

It is clear that mn is a state on L∞(R) for all n ≥ 1. Since L∞(R) is a unital C∗-algebra, the state
space of L∞(R) is weak∗ compact by [31, Proposition 13.8], so there exists a subnet (mnα)α∈A of the
sequence (mn)n≥1 that converges to a state m ∈ (L∞(R))∗. This m is in fact a left invariant mean: for
f ∈ L∞(R) and r ∈ R, we have

mnα(τr(f)− f) =
1

2nα

∫ nα

−nα
f(t− r)− f(t))dt

=
1

2nα

(∫ nα−r

−nα−r
f(t)dt−

∫ nα

−nα
f(t)dt

)
=

1

2nα

(∫ −nα
−nα−r

f(t)dt−
∫ nα

nα−r
f(t)dt

)
by the fact that

∫ −nα
−nα−r +

∫ nα
−nα =

∫ nα−r
−nα−r +

∫ nα
nα−r. Hence

|mnα(τr(f)− f)| ≤ 1

2nα
(|r|‖f‖∞ + |r|‖f‖∞) =

|r|
nα
‖f‖∞ → 0.

Since mnα(τr(f)−f)→ m(τr(f)−f) as well by the weak∗ convergence, it follows that m(τr(f)−f) = 0
or m ◦ τr = m for all r ∈ R. Hence (R,+) is amenable.

Just like the previous section, this section has a secret agenda: it also wants to connect a property of
a von Neumann algebra to a property of a crossed product. Note that any crossed product was in fact
a �xpoint algebra by Theorem 4.18. Do you see where we are going?

Proposition 4.21. Let M ⊆ B(H) be a von Neumann algebra and let Γ be an locally compact
amenable group acting continuously on M by the homomorphism θ : Γ → Aut(M ). Then there is a
projection E : M →M Γ

θ of norm 1 where M Γ
θ is the �xpoint algebra in M for the action of Γ on M .

In particular, if M is injective, then M Γ
θ is injective.

Proof. Let m be a left invariant mean on L∞(Γ). For �xed T ∈M and ξ, η ∈ H, the function

s 7→ 〈θs(T )ξ, η〉

is a continuous function on Γ bounded above by the constant ‖T‖‖ξ‖‖η‖ and hence it is an element of
L∞(Γ). This allows us to de�ne a sesquilinear form on H by

〈ξ, η〉 =

∫
Γ

〈θg(T )ξ, η〉dm(s).

Since ∣∣∣∣∫
Γ

〈θg(T )ξ, η〉dm(s)

∣∣∣∣ ≤ ‖T‖‖ξ‖‖η‖
for all ξ, η ∈ H, then by the Riesz representation theorem [14, Theorem 2.4.1] there exists a unique
operator E(T ) ∈ B(H) such that

〈E(T )ξ, η〉 =

∫
Γ

〈θs(T )ξ, η〉dm(s), ξ, η ∈ H.

It is easily seen that E is linear by virtue of each θs being a linear map M → M and each E(T )
satisfying the above property. Moreover, ‖E(T )‖ ≤ ‖T‖ for any T ∈ M . We claim that E is our
wanted projection of norm 1. Fix T ∈M and note that the above inequality can be written as

ωξ,η(E(T )) =

∫
Γ

ωξ,η(θs(T ))dm(s), ξ, η ∈ H.

Any ω ∈ B(H)∗ is a limit in norm of sums of the vector functionals ωξ,η. Moreover, ‖θs(T )‖ ≤ ‖T‖
for all s ∈ Γ, so if sα → s in Γ, then θsα(T ) → θs(T ) strongly and hence ultraweakly. Therfore
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s 7→ ω(θs(T )) is a continuous bounded function on Γ for any ω ∈ B(H)∗. From these observations it
now follows that

ω(E(T )) =

∫
Γ

ω(θs(T ))dm(s), ω ∈ B(H)∗.

If ω ∈ M⊥ = {ω ∈ B(H)∗ |ω(T ) = 0 for all T ∈ M }, then because θs(T ) ∈ M for all s ∈ Γ,
we have ω(θs(T )) = 0 for all s ∈ Γ and hence ω(E(T )) = 0. Therefore E(T ) ∈ M⊥⊥ = M by
Lemma 2.6. Moreover, for all ω ∈ B(H)∗ and s0 ∈ Γ, then since θs0 is a ∗-isomorphism and hence
ultraweakly-to-ultraweakly continuous by Proposition 2.48, we have that ω ◦ θs0 ∈ B(H)∗ and hence

ω(θt0(E(T ))) =

∫
Γ

ω ◦ θt0(θs(T ))dm(s) =

∫
Γ

ω(θt0s(T ))dm(s) =

∫
Γ

ω(θs(T ))dm(s) = ω(E(T ))

for all t0 ∈ Γ, where we used left invariance of m at the penultimate equality. Hence we have
θt0(E(T )) = E(T ) for all t0 ∈ Γ. Hence all E(T ) are �xed by θ, so E(T ) ∈ M Γ

θ . Also, if T ∈ M Γ
θ ,

then
〈E(T )ξ, η〉 =

∫
Γ

〈θs(T )ξ, η〉dm(s) =

∫
Γ

〈Tξ, η〉dm(s) = 〈Tξ, η〉, ξ, η ∈ H,

so E(T ) = T . Hence E is a projection of M onto M Γ
θ of norm 1.

As Christoph Waltz exclaimed near the end of the great movie Inglourious Basterds: �That's a bingo!�

Corollary 4.22. If M ⊆ B(H) is a σ-�nite and injective von Neumann algebra with a normal faithful
state ω, then R(M , σωt ) is injective.

Proof. It follows from Proposition 4.12 that M ⊗B(L2(R)) ⊆ B(H ⊗ L2(R)) is injective. Therefore,
there exists a projection E : B(H ⊗ L2(R)) → M ⊗B(L2(R)) onto, of norm 1. Since R(M , σωt ) can
be embedded in M ⊗B(L2(R)) by Corollary 4.17 and is the �xpoint algebra of a strongly continuous
action θt on M ⊗B(L2(R)) by Theorem 4.18, then by Proposition 4.21, R(M , σωt ) is injective.



CHAPTER 5

SEMIDISCRETE VON NEUMANN ALGEBRAS

The notion of semidiscreteness arises from the concept of nuclearity of C∗-algebras, a notion equivalent
to the one of ⊗-nuclearity in Chapter 1 (the reader is advised to consult [4] for more information on
this), and comes o� as a �topological variant of approximate �nite-dimensionality� at �rst sight. In
fact, we shall not only explore the various qualities of semidiscreteness in this chapter but also prove
that it is equivalent to injectivity, which will be the last goal of this project. This is very surprising
because the two concepts look nowhere alike.

De�nition 5.1. Let M be a von Neumann algebra. M is said to be semidiscrete if the identity
mapping idM : M →M can be approximated ultraweakly by normal, completely positive maps ϕ of
�nite rank such that ϕ(1M ) = 1M . That is, M is semidiscrete if and only if there is a net (ϕα)α∈A in
B(M ) of normal, complete positive maps of �nite rank and ϕα(1M ) = 1M for all α ∈ A such that

|ω(ϕα(T )− T )| → 0, T ∈M , ω ∈M∗,

or, equivalently, ϕα(T )→ T ultraweakly for all T ∈M .

As in Chapter 4, we quickly make sure that semidiscreteness is preserved by ∗-isomorphisms.

Proposition 5.1. Let M and N be von Neumann algebras for which there exists a ∗-isomorphism
ρ : M → N . If M is semidiscrete, then N is semidiscrete.

Proof. Note that ρ is necessarily unital, since ρ(1M ) is a unit for ρ(M ) = N . Let (ϕα)α∈A be a net
in B(M ) satisfying the conditions of De�nition 5.1. For all α ∈ A, let ψα : N → N be the linear map
given by ψα = ρ ◦ ϕα ◦ ρ−1. Let α ∈ A. By Proposition 3.11, ψα is completely positive, and since all
∗-homomorphisms are contractive, ψα ∈ B(N ). Moreover, by Proposition 2.48, ψα is normal; since
ρ is unital, ψα(1N ) = 1N , and ψα clearly has �nite rank, since ρ and ρ−1 are linear isomorphisms.
Finally, for all ω ∈ N∗ and T ∈ N , ω ◦ ρ ∈M∗ by Proposition 2.45, so

|ω(ψα(T )− T )| = |(ω ◦ ρ)(ϕα(ρ−1(T ))− ρ−1(T ))| → 0.

Hence (ψα)α∈A is a net satisfying the conditions of De�nition 5.1 for N , so N is semidiscrete.

We will need an alternate criterion for a von Neumann algebra to be semidiscrete, realizing the concept
on a much more local scale. In many cases this criterion will be easier to work with than the original
formulation. There are no surprises in the proof: we only work with the ultraweak topology as a locally
convex topology, and the requirement of complete positivity and being �nite rank is not used at all.

Proposition 5.2. Let M be a von Neumann algebra. Then the following conditions are equivalent:

(i) M is semidiscrete.
(ii) For any ε > 0, any given �nite set F ⊆M with F = {T1, . . . , Tn} and any ultraweakly continuous

functionals ω1, . . . , ωn ∈M∗, there exists a normal, completely positive map ϕ ∈ B(M ) of �nite
rank satisfying ϕ(1M ) = 1M such that

|ωi(ϕ(Ti)− Ti)| < ε.

Proof. Assume that (i) holds, i.e. that M is semidiscrete, and let (ϕα)α∈A be a net in B(M ) as
in De�nition 5.1. Let ε > 0 be given, let F ⊆ M be a �nite set with F = {T1, . . . , Tn} and let
ω1, . . . , ωn ∈M∗. For any i = 1, . . . , n, we can now take αi ∈ A such that

|ωi(ϕα(Ti)− Ti)| < ε

94
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for all α ≥ αi. Let α0 ∈ A such that α0 ≥ αi for all i = 1, . . . , n and let ϕ = ϕα0 . Then clearly
ϕ ∈ B(M ) is normal, completely positive, is of �nite rank, satis�es ϕ(1M ) = 1M and

|ωi(ϕ(Ti)− Ti)| < ε, i = 1, . . . , n

since α0 ≥ αi for all i = 1, . . . , n. Hence (ii) follows.

Assuming instead that (ii) holds, let A = {F ⊆ M |F is finite} be ordered by inclusion, making it
a directed set. Moreover, let B = {G ⊆ M∗ |G is finite} be ordered by inclusion as well, and let
C = {(F,G) ∈ A × B | |F | = |G|}. We make C into a directed set by de�ning (F1, G1) ≤ (F2, G2)
if F1 ⊆ F2 and G1 ⊆ G2. For any (F,G) ∈ C, let ϕF,G ∈ B(M ) be given as per (ii) such that
|ω(ϕF,G(T )− T )| < 1

|F | for all T ∈ F and ω ∈ G. Given T ∈M , ω ∈M∗ and ε > 0, take (F0, G0) ∈ C
such that T ∈ F0, ω ∈ G0 and |F0| > 1

ε . Then for all (F,G) ∈ C such that (F,G) ≥ (F0, G0), we have
|F | ≥ |F0| and hence

|ω(ϕF,G(T )− T )| < 1

|F |
≤ 1

|F0|
< ε.

Therefore M is semidiscrete, as the net (ϕF,G)(F,G)∈C satis�es the conditions of De�nition 5.1.

5.1 Semidiscreteness and preduals

If M is a von Neumann algebra and (ϕα)α∈A is a net in B(M ) satisfying the properties of De�nition
5.1, then for any ω ∈M∗ we have ϕ∗α(ω) ∈M∗ as well by normality (this is Proposition 2.45), yielding
a net (ϕ∗α|M∗)α∈A in B(M∗). By bringing in the canonical identi�cation Λ: M → (M∗)

∗ of Theorem
2.7 the convergence requirement of De�nition 5.1 can be written as

|Λ(T )(ϕ∗α − idM∗)(ω)| = |ω(ϕα(T )− T )| → 0, T ∈M , ω ∈M∗.

It becomes useful to describe this convergence by means of the point-norm and point-weak topologies
(see Appendix A for a runthrough of the de�nition), in which case we have ϕ∗α|M∗ → idM∗ in the
point-weak topology. The purpose of this section is to �nd the properties of this net in order to
describe another condition equivalent to semidiscreteness.

In order of this description to be as thorough as possible, we will �rst need to discuss positivity
properties of the maps connecting M to M∗. In particular, we will need to know if complete positivity
is preserved when passing to (duals of) matrix spaces, and in order to this to make sense, we need to
bring in some helpful isomorphisms. Hopefully the next two paragraphs will not be too confusing.

Let n ≥ 1 and let M be a von Neumann algebra. If φn : Mn(M∗) → Mn(M )∗ is the isomorphism of
Proposition 3.4, we can makeMn(M∗) into a Banach space by equipping it with the norm ofMn(M )∗
using φn, and we can de�ne Ωn : (M∗)

∗ �Mn(C)→Mn(M∗)
∗ by

Ωn

 n∑
i,j=1

ϕij ⊗ eij

 (ω) =

n∑
i,j=1

ϕij(ωij), ω = (ωij)
n
i,j=1 ∈Mn(M∗),

where (eij)
n
i,j=1 is the canonical matrix basis for Mn(C). We claim that Ωn is a linear isomorphism.

Indeed, it is �rst and foremost well-de�ned, as Ωn(w) is linear and bounded by
∑n
i,j=1 ‖ϕij‖ for any w =∑n

i,j=1 ϕij ⊗ eij ∈ (M∗)
∗�Mn(C), using Proposition 3.4. If Ωn(w) = 0 for some w ∈ (M∗)

∗�Mn(C),
then it is clear that w = 0, by checking values on matrices in Mn(M∗) with only one entry di�erent
from the zero functional, so Ωn is injective. For surjectivity, let ϕ ∈ Mn(M∗)

∗ and for i, j = 1, . . . , n,
de�ne ϕij : M∗ → C by

ϕij(ω) = ϕ(ρij(ω)),

where ρij(ω) is the matrix in Mn(M∗) with ω at position (i, j) and 0 everywhere else; clearly ϕij is
linear and bounded, and Ωn(

∑n
i,j=1 ϕij ⊗ eij) = ϕ. We identify (M∗)

∗ �Mn(C) with Mn(M∗)
∗ this

way, and in particular the positive elements, so that an element ϕ ∈ (M∗)
∗ �Mn(C) is positive if and

only if Ωn(ϕ) is a positive linear functional in Mn(M∗)
∗.
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Now, let Λ: M → (M∗)
∗ and Λn : Mn(M )→ (Mn(M )∗)

∗ be the canonical identi�cations of Theorem
2.7, and let idn : Mn(C) → Mn(C) be the identity. Under the identi�cation Mn(M ) = M �Mn(C),
we have for all ω = (ωij)

n
i,j=1 ∈Mn(M∗) that

Ωn ◦ (Λ⊗ idn)

 n∑
i,j=1

Tij ⊗ eij

 (ω) =

n∑
i,j=1

ωij(Tij),

and

φ∗n ◦ Λn((Tij)
n
i,j=1)(ω) = Λn((Tij)

n
i,j=1)(φn(ω)) =

n∑
i,j=1

ωij(Tij),

so
Λ⊗ idn = Ω−1

n ◦ φ∗n ◦ Λn.

Λn yields a one-to-one correspondence between positive elements in Mn(M ) and positive linear func�
tionals in (Mn(M )∗)

∗. Moreover, remember from Section 3.1 that we de�ned x ∈ Mn(M∗) to be
positive if and only if φn(x) ∈Mn(M )∗ was positive.

Proposition 5.3. Let M be a von Neumann algebra. Then the following conditions are equivalent:

(i) M is semidiscrete.

(ii) There exists a net in B(M∗) of completely positive maps of �nite rank, mapping states to states,
that converges in point-norm topology to the identity mapping idM∗ : M∗ →M∗.

Proof. Suppose �rst that M is semidiscrete and let (ϕα)α∈A be a net in B(M ) approximating the
identity map on M as per De�nition 5.1. De�ning ψα : M∗ → M∗ by ψα(ω) = ω ◦ ϕα = ϕ∗α(ω)
for all α ∈ A, then all ψα are well-de�ned by Proposition 2.45, clearly linear, completely positive by
Proposition 3.21 and �nite rank by Lemma A.10. Moreover, if ω ∈M∗ is a state, then ψα(ω) is positive
and ψα(ω)(1M ) = ω(ϕα(1M )) = 1, so ψα maps states to states. Since

|(ψα(ω)− ω)(T )| = |ω(ϕα(T )− T )| → 0

for all ω ∈ M∗ and T ∈ M , and hence for all ϕ ∈ (M∗)
∗, we have ϕ(ψα(ω) − ω) → 0 by Theorem

2.7. Hence ψα converges to the identity map idM∗ on M∗ in the point-weak topology, so by letting
S = conv{ψα |α ∈ A}, we have idM∗ is in the point-weak closure of S . Hence idM∗ is in the
point-norm closure of S as well by Corollary A.8. It can be checked easily that S itself consists of
completely positive maps of �nite rank that map states to states, hence yielding (ii).

Assume instead that (ii) holds and let (χα)α∈A be a net in B(M∗) satisfying the conditions of (ii).
For each α ∈ A, note that by considering the dual map χ∗α : (M∗)

∗ → (M∗)
∗, we can de�ne a map

ϕα : M →M by
ϕα = Λ−1 ◦ χ∗α ◦ Λ,

where Λ: M → (M∗)
∗ is the canonical identi�cation from Theorem 2.7. Since χ∗α has �nite rank and

Λ is a linear isomorphism, ϕα also has �nite rank. ϕα is clearly ultraweakly-to-ultraweakly continuous
by Corollary 2.8.

To prove that ϕα is in fact completely positive, let n ≥ 1. We will use what we know about the maps
Λn, φn and Ωn as well as idn : Mn(C) → Mn(C), as de�ned in the discussion before the statement of
this proposition. Note that since χα is completely positive, then φn ◦χ(n)

α ◦φ−1
n : Mn(M )∗ →Mn(M )∗

is positive as well. Hence

(φ∗n)−1 ◦ (χ(n)
α )∗ ◦ φ∗n : (Mn(M )∗)

∗ → (Mn(M )∗)
∗

maps positive linear functionals in (Mn(M )∗)
∗ to positive linear functionals, so

Λ−1
n ◦ (φ∗n)−1 ◦ (χ(n)

α )∗ ◦ φ∗n ◦ Λn
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is a positive map Mn(M )→Mn(M ). For all ω = (ωij)
n
i,j=1 ∈Mn(M∗), then

Ωn ◦ (χ∗α ⊗ idn)

 n∑
i,j=1

ϕij ⊗ eij

 (ω) =

n∑
i,j=1

ϕij(χα(ωij)

= Ωn

 n∑
i,j=1

χα(ϕij ⊗ eij

 (χ(n)
α (ω))

= (χ(n)
α )∗ ◦ Ωn

 n∑
i,j=1

ϕij ⊗ eij

 (ω),

so Ωn ◦ (χ∗α ⊗ idn) ◦ Ω−1
n = (χ

(n)
α )∗. As

Λ−1
n ◦ (φ∗n)−1 ◦ (χ(n)

α )∗ ◦ φ∗n ◦ Λn = (Λ−1 ⊗ idn) ◦ (χ∗α ⊗ idn) ◦ (Λ⊗ idn) = ϕ(n)
α .

Hence ϕ(n)
α is positive, so ϕα is completely positive. Finally, let ω ∈M∗ and note that

(Λ ◦ ϕα)(1M ))(ω) = (χ∗α ◦ Λ)(1M )(ω) = χα(ω)(1M ).

By Theorem 2.40, ω =
∑4
i=1 λiωi where λi ∈ C and ωi is an ultraweakly continuous state. Hence

χα(ω)(1M ) =

4∑
i=1

λiχα(ωi)(1M ) =

4∑
i=1

λi = ω(1M ) = Λ(1M )(ω),

as χα sends normal states to normal states. Hence Λ(ϕα(1M )) = Λ(1M ), so ϕα(1M ) = 1M . Finally,
for T ∈M and ω ∈M∗, we have

ω(ϕα(T )) = Λ(ϕα(T ))(ω) = χ∗α(Λ(T ))(ω) = χα(ω)(T ),

so
|ω(ϕα(T )− T )| = |(χα(ω)− ω)(T )| ≤ ‖χα(ω)− ω‖‖T‖ → 0.

Hence M is semidiscrete, as (ϕα)α∈A satis�es the wanted properties.

Similar to the local condition of Proposition 5.2 equivalent to semidiscrete, we can derive a consequence
of condition (ii) above.

Corollary 5.4. Let M be a semidiscrete von Neumann algebra. Then for any ω1, . . . , ωn ∈M∗ and
ε > 0, there exists a normal, completely positive map ϕ ∈ B(M ) of �nite rank, satisfying ϕ(1M ) = 1M ,
such that

‖ωi ◦ ϕ− ωi‖ < ε, i = 1, . . . , n.

Proof. By Proposition 5.3, there exists a net (χα)α∈A in B(M∗) having the properties mentioned in
condition (ii) of the proposition. Using this net, it is easy to �nd a normal, completely positive map
χ ∈ B(M∗) of �nite rank that sends normal states to normal states such that ‖χ(ωi) − ωi‖ < ε for
all i = 1, . . . , n (the method used in Proposition 5.2 can easily be applied here). As in the proof of
Proposition 5.3, one can �nd that ϕ ∈ B(M ) given by ϕ = Λ−1 ◦ χ∗ ◦ Λ where Λ: M → (M∗)

∗

is the canonical identi�cation of Theorem 2.7 has every property mentioned in the statement of this
proposition.

The �nal theorem of this section is perhaps a bit of a cheat, as one of the implications depends on
a result that we have not proved yet (even though we will). The reason that it is put here is simply
because the notation and mindset used in the proof is very much in keeping with the methods and
ideas used previously in this section, and one might have forgotten them all once we actually have all
the information we need to prove the theorem. We do however have the knowledge needed to prove
most of it, so here it is.

Theorem 5.5. Let A be a C∗-algebra. Then the following are equivalent:

(i) A∗∗ is semidiscrete.



98 CHAPTER 5. SEMIDISCRETE VON NEUMANN ALGEBRAS

(ii) The identity map A∗ → A∗ is the point-weak∗ limit of a net of completely positive �nite-rank
contractions, i.e. there exists a net (ρα)α∈A of completely positive �nite-rank contractions A∗ →
A∗ such that ρα(χ)→ χ in the weak∗-topology for all χ ∈ A∗.

(iii) For any C∗-algebra B, any completely positive contraction δ : B → A∗ is the point-weak∗ limit of
a net of completely positive �nite-rank contractions.

(iv) For any C∗-algebra B, any state in S(A�B) is the weak∗ limit of states in A∗ �B∗ ∩ S(A�B)
(see page 26).

(v) A is ⊗-nuclear.

Proof. (v)⇒ (i) follows from Theorem 5.19, requiring the knowledge that semidiscreteness is the same
as injectivity (in other words, stick around for a proof). Let M = A∗∗ and assume that M is
semidiscrete. If (ϕα)α∈A is a net in B(M ) approximating the identity map on M as per De�nition
5.1, recall that in the proof of Proposition 5.3 � speci�cally (i)⇒ (ii) � we found a net (ψα)α∈A in
B(M∗) of completely positive �nite-rank maps, sending states to states, that converged to the identity
map M∗ → M∗ in the point-weak topology. If (ϕα)α∈A and (ψα)α∈A are such nets of B(M ) and
B(M∗) respectively found in the proof of (i)⇒ (ii), then by letting Ω: M∗ → A∗ be the isometric
isomorphism of Proposition 3.24 we now de�ne ρα : A∗ → A∗ by ρα = Ω◦ψα ◦Ω−1 for all α ∈ A. Then
each ρα is contained in B(A∗), has �nite rank and is completely positive. For χ ∈ A∗ and a ∈ A, we
have

‖ρα(χ)‖ = ‖ψα ◦ Ω−1(χ) ◦ ι‖ ≤ ‖Ω−1(χ)‖ϕα‖‖ι‖ ≤ ‖χ‖.
This proves that each ρα is contractive. Finally,

ρα(χ)(a) = Ω−1(χ)(ϕα(ι(a))→ Ω−1(χ)(ι(a)) = χ(a)

for all χ ∈ A∗ and a ∈ A, so we have (ii). If B is a C∗-algebra and δ : B → A∗ is a completely positive
contraction, then note that ρα ◦ δ : B → A∗ is completely positive, contractive and has �nite rank for
all α ∈ A and that ρα(δ(b))→ δ(b) in the weak∗-topology for all b ∈ B, so (iii) follows from (ii).

Assume (iii). Let B be a C∗-algebra and let ϕ ∈ S(A� B). De�ne δ : B → A∗ by

δ(b)(a) = ϕ(a⊗ b).

As |δ(b)(a)| ≤ 1 for all a ∈ (A)1 and b ∈ (B)1, then ‖δ(b)‖ ≤ 1 for all b ∈ (B)1. Therefore δ is a
contraction. For b1, . . . , bn ∈ B and a1, . . . , an ∈ A, write x =

∑n
i=1 ai ⊗ bi and note

n∑
i,j=1

δ(b∗i bj)(a
∗
i aj) = ϕ(x∗x) ≥ 0.

Thus δ is completely positive by Proposition 3.22. Hence δ = ρ∗ ◦ δ is the point-weak∗ limit of a net
(δα)α∈A of completely positive contractions B → A∗ of �nite rank by the assumption.

Let ε > 0. Since ‖ϕ‖alg = 1, there exist a ∈ (A)1 and b ∈ (B)1 such that |δ(b)(a)| = |ϕ(a⊗ b)| ≥ 1− ε
2 .

Taking α0 ∈ A such that α ≥ α0 implies |δ(b)(a)− δα(b)(a)| < ε
2 , we now see that α ≥ α0 implies

‖δα‖ ≥ |δα(b)(a)| > |δ′(b)(a)| − ε

2
≥ 1− ε.

Hence ‖δα‖ → 1. De�ning δ′α = ‖δα‖−1δα for large enough α, it follows that δ′α → δ in the point-weak∗

topology. Each δ′α is then a completely positive map of norm 1 and of �nite rank. By universality of
the tensor product, then from each δ′α we can derive a linear functional ϕα : A�B → C that uniquely
satis�es

ϕα(a⊗ b) = δ′α(b)(a), a ∈ A, b ∈ B.
For any x =

∑n
i=1 ai ⊗ bi ∈ A� B, Proposition 3.22 tells us that

ϕ′α(x∗x) =

n∑
i,j=1

δ′α(b∗i bj)(a
∗
i aj) ≥ 0,

so ϕ′α is algebraically positive. Clearly ‖ϕα‖alg ≤ 1. For any ε > 0, let b ∈ (B)1 such that ‖δ′α(b)‖+ ε
2 ≥

1, and let a ∈ (A)1 such that |δ′α(b)(a)|+ ε
2 ≥ ‖δ

′
α(b)‖. Then

|ϕα(a⊗ b)| = |δ′α(b)(a)| ≥ 1− ε,
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so ‖ϕα‖alg = 1. Hence ϕα ∈ S(A� B).

But wait, there's more! For any δ′α then Lemma A.9 yields ϕ1, . . . , ϕn ∈ B∗ and ψ1, . . . , ψn ∈ A∗ such
that

δ′α(b) =

n∑
i=1

ϕi(b)ψi, b ∈ B.

De�ning χ =
∑n
i=1 ψi�ϕi, then χ ∈ A∗�B∗. We also see that for x =

∑m
j=1 aj ⊗ bj ∈ A�B, we have

ϕα(x) =

m∑
j=1

δ′α(bj)(aj) =

m∑
j=1

n∑
i=1

ψi(aj)ϕi(bj) =

m∑
j=1

χ(aj ⊗ bj) = χ(x),

so ϕα ∈ A∗ � B∗ ∩ S(A� B) = M(A,B) (see page 26). Finally, for all x ∈ A� B, we see that

ϕα(x) =

n∑
i=1

δ′α(bi)(ai)→
n∑
i=1

δ(bi)(ai) = ϕ(x),

hence (iv).

For (iv)⇒ (v), we step outside the proof for just a moment. Assume �rst that A is non-unital and
let Ã denote the unitization of A. We shall soon see that (Ã)∗∗ is semidiscrete if and only if A∗∗ is
semidiscrete; this will follow from Corollary 3.15 and Proposition 5.7, as C is semidiscrete. Hence (iv)
holds for Ã as well. Now let B be a C∗-algebra; (iv) then implies that

‖x‖max = sup{ϕ(x∗x) |ϕ ∈ S(A� B)} = sup{ϕ(x∗x) |ϕ ∈M(A,B)}, x ∈ A� B.

(See page 25 for an explanation of the �rst equality.) If B is unital, then Corollary 1.48, yields that
‖x‖max = ‖x‖min for all x ∈ Ã � B. Theorem 1.49 now yields that A� B has a unique C∗-norm. If B
is non-unital, we similarly have ‖x‖max = ‖x‖min for all x ∈ Ã � B̃, so A � B has a unique C∗-norm
by the same theorem. Hence we conclude that A is ⊗-nuclear. If A is unital, the same considerations
(but with no need to pass to unitizations) yield that A is ⊗-nuclear.

Thus semidiscreteness is inseparably connected to the notion of ⊗-nuclearity which will help out a great
deal in the future, should we for instance want to prove that ⊗-nuclearity is preserved by well-known
C∗-algebra constructions. We close out the section by one of the consequences of the above theorem,
for which Nathanial Brown notes in [3] that a C∗-algebra proof cannot be easily derived (�good luck�
are his exact words).

Corollary 5.6. Let A be a C∗-algebra with a closed two-sided ideal J. Then A is ⊗-nuclear if and
only if J and A/J are ⊗-nuclear.

Proof. As A∗∗ ∼= J∗∗ ⊕ (A/J)∗∗ by Proposition 3.14, the result follows from Propositions 5.7 and 5.1
and Theorem 5.5.

5.2 The construction of semidiscrete von Neumann algebras

The purpose of the next two sections will be to show that the typical von Neumann algebra con�
structions preserve semidiscreteness, keeping in mind that we have to justify the �illegal� use of the
statement that semidiscreteness is equivalent to injectivity (which we haven't yet proved) in the proof
of Theorem 5.5 and Corollary 5.6. The constructions that we will investigate are therefore the same
as in Section 4.2, but do not think that the statement have no reasons for existence in their own right.
The proofs are in a way much more delicate than those in the aforementioned section, even though
they are much longer.

Proposition 5.7. Let (Mi)i∈I be a family of von Neumann algebras. Then M =
⊕

i∈I Mi is semidis�
crete if and only if Mi is semidiscrete for all i ∈ I.

Proof. We prove �rst that M semidiscrete implies that all Mi are semidiscrete. Let ϕ : M →M be
a completely positive map such that ϕ(1M ) = 1M . Let i0 ∈ I be �xed. De�ne N =

⊕
i∈I Mi0 ,

and let ∆: Mi0 → N be the diagonal mapping given by ∆(T )(ξi)i∈I = (Tξi)i∈I . Note that ∆ is a
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∗-homomorphism and hence completely positive by Proposition 3.11, as well as normal by Corollary
2.51, satisfying ∆(1Mi0

) = 1N . Furthermore let ρ ∈ (Mi0)∗ be a �xed ultraweakly continuous state.
De�ne maps θi : Mi0 →Mi for all i ∈ I by

θi(T ) =

{
T for i = i0

ρ(T )1Mi
for i 6= i0

and yet another map θ =
⊕

i∈I θi : N →M by

θ((Ti)i∈I) = (θi(Ti))i∈I .

θi is completely positive and normal for all i ∈ I: in the case i 6= i0 this is clear, and since θi is the
composition of ρ and the clearly normal ∗-homomorphism C →Mi given by λ 7→ λ1Mi

for i 6= i0, it
should be clear as well. Thus θ is completely positive and normal by Corollary 3.17 and additionally
satis�es θ(1N ) = 1M . Finally, let π : M →Mi0 be the projection of M onto Mi0 . π is then a normal
∗-homomorphism by Proposition 2.52 and thus completely positive, and π(1M ) = 1Mi0

. We can now
de�ne a map ϕi0 : Mi0 →Mi0 by

ϕi0 = π ◦ ϕ ◦ θ ◦∆.

Hence if ϕ : M →M is normal, completely positive and has �nite rank with ϕ(1M ) = 1M , then the
same holds for ϕi0 .

Assume now that M is semidiscrete and let (ϕα)α∈A be a net in B(M ) approximating the identity
map on M as per De�nition 5.1. On the grounds of what we just de�ned and proved, then for i0 ∈ I
the net ((ϕα)i0)α∈A in B(Mi0) is a net of completely positive, normal maps of �nite rank satisfying
(ϕα)i0(1Mi0

) = 1Mi0
for all α ∈ A. Additionally, for any given ω ∈ (Mi0)∗ de�ne ω̃ = ω ◦ π ∈ (Mi0)∗,

using Proposition 2.45 as π is normal. By de�ning T̃ = θ◦∆(T ) ∈M and noting that π◦θ◦∆ = idMi0
,

then
ω̃(ϕα(T̃ )− T̃ ) = ω(π(ϕα(T̃ )− T̃ ))) = ω((ϕα)i0(T )− T ).

As |ω̃(ϕα(T̃ )− T̃ )| → 0 by assumption, it follows that Mi0 is semidiscrete.

For the converse statement, assume that Mi is semidiscrete for all i ∈ I and let J ⊆ I be a �nite subset
of I. De�ne J ′ = I \ J and let N1 =

⊕
i∈J Mi and N2 =

⊕
i∈J′ Mi. For any i ∈ J , let ϕi ∈ B(Mi)

be a completely positive, normal mapping such that ϕi(1Mi
) = 1Mi

. De�ne ϕ′ : N1 → N1 by

ϕ′((Ti)i∈J) = (ϕi(Ti))i∈J , (Ti)i∈J ∈ N1.

Then ϕ′ is normal and completely positive and ϕ′(1N1
) = 1N1

by Corollary 3.17.

Choose an ultraweakly continuous state ρ ∈M∗, let θ1 : M → N1 and θ2 : M → N2 be the projections,
and let ϑ1 : N1 →M and ϑ2 : N2 →M be the inclusions. θ1, θ2, ϑ1 and ϑ2 are normal and completely
positive by Propositions 2.52 and 3.11 for all i ∈ I, since they are ∗-homomorphisms.

Now, de�ne a map ϕ : M →M by

ϕ = ϑ1 ◦ ϕ′ ◦ θ1 + ϑ2 ◦ θ2 ◦ κ ◦ ρ,

where κ : C → M is de�ned by κ(λ) = λ1M . Again κ is normal and completely positive. It then
follows that ϕ is normal and completely positive, satisfying ϕ(1M ) = 1M . Moreover, if the ϕi for all
i ∈ J have �nite rank, then ϕ′ also has �nite rank, so as ϑ2 ◦θ2 ◦κ◦ρ has image contained in the linear
span of ϑ2(θ2(1M )), it follows that ϕ has �nite rank.

Now let ε > 0, T 1, . . . , Tn ∈M and ω1, . . . , ωn ∈M∗ be given, where T p = (T pi )i∈I with T
p
i ∈Mi for

all i ∈ I and p = 1, . . . , n. Since M∗ ∼=
⊕

i∈I(Mi)∗ by Proposition 2.57, ωp corresponds to a family
(ωpi )i∈I where ω

p
i ∈ (Mi)∗ for all i ∈ I and p = 1, . . . , n and

‖ωp‖ =
∑
i∈I
‖ωpi ‖ <∞, p = 1, . . . , n.

Hence there exists a �nite subset J ⊆ I such that∑
i/∈J

‖ωpi ‖ < ε, p = 1, . . . , n.
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Let λ be the cardinality of J . For i ∈ J we can by Proposition 5.2 �nd normal, completely positive
maps ϕi ∈ B(Mi) of �nite rank that satisfy ϕi(1Mi) = 1Mi , such that

|ωpi (ϕi(T
p
i )− T pi )| < ε

λ
, i ∈ J, p = 1, . . . , n.

By de�ning ϕ ∈ B(M ) by means of the ϕi for i ∈ J as we did above, we then �nd that

|ωp(ϕ(T p)− T p)| =

∣∣∣∣∣∑
i∈J

ωpi (ϕi(T
p
i )− T pi ) +

∑
i/∈J

ωpi (1Mi
)ρ(T p)

∣∣∣∣∣
≤
∑
i∈J
|ωpi (ϕi(T

p
i )− T pi )|+ |ρ(T p)|

∑
i/∈J

‖ωpi ‖

< ε+ ‖T p‖ε
= (1 + ‖T p‖)ε

for all p = 1, . . . , n, it follows from Proposition 5.2 that M is semidiscrete.

For the reduced von Neumann algebra case, note that if T ∈MP for a von Neumann algebra M and
a projection P ∈ M and there is an S ∈ M such that PS|P (H) = T , we have PSP = PTP . Hence
PTP is an operator in M for all T ∈MP .

Lemma 5.8. Let H be a Hilbert space, let M ⊆ B(H) be a von Neumann algebra and let P ∈M be
a projection. Then the maps ι : MP →M and π : M →MP given by

ι(S) = PSP, π(T ) = PT |P (H), S ∈MP , T ∈M

are normal and completely positive. Moreover, if S ⊆M is a �nite-dimensional subspace, then π(S )
is �nite-dimensional.

Proof. Note that ι and π are clearly linear, bounded and positive; the last property follows from the
equations

〈PSPξ, ξ〉 = 〈SPξ, Pξ〉 ≥ 0, 〈PT |P (H)η, η〉 = 〈Tη, η〉 ≥ 0,

where ξ ∈ H and η ∈ P (H), and S ∈MP and T ∈M are positive.

We now check normality. Therefore, let ω1 ∈M∗ and ω2 ∈ (MP )∗ and pick square-summable sequences
(ξ′n)n≥1, (η′n)n≥1 in P (H) and (ξn)n≥1, (ηn)n≥1 in H such that

ω1(S) =

∞∑
n=1

〈Sξ′n, η′n〉, ω2(T ) =

∞∑
n=1

〈Tξn, ηn〉, S ∈MP , T ∈M ,

using Theorem 2.7 and Proposition 2.2. As

ω1(ι(S)) =

∞∑
n=1

SPξn, Pηn〉, ω2(π(T )) =

∞∑
n=1

〈Tξ′n, η′n〉, S ∈MP , T ∈M ,

it clearly follows that ω1 ◦ ι ∈ (MP )∗ and ω2 ◦ π ∈M∗. Proposition 2.45 then tells us that ι and π are
normal.

To see that ι and π are completely positive, let n ≥ 1, let S = (Sij)
n
i,j=1 ∈ Mn(MP ) and T =

(Tij)
n
i,j=1 ∈Mn(M ) be positive matrices ξ = (ξ1, . . . , ξn) ∈ Hn and η = (η1, . . . , ηn) ∈ P (H)n. Then

〈ι(n)(S)ξ, ξ〉 =

n∑
i,j=1

〈PSijPξj , ξi〉 =

n∑
i,j=1

〈SijPξj , P ξi〉 = 〈SPξ, Pξ〉 ≥ 0,

where Pξ = (Pξ1, . . . , P ξn) ∈ P (H)n and

〈π(n)(T )η, η〉 =

n∑
i,j=1

〈Tijηj , ηi〉 = 〈Tη, η〉 ≥ 0.
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Hence ι and π are completely positive.

For the �nal statement, assume that S ⊆ M is a �nite-dimensional subspace with a vector basis
T1, . . . , Tn ∈ S . Then it is clear that the operators PTi|P (H) ∈ MP (where i = 1, . . . , n) span the
subspace π(S ); hence π(S ) is �nite-dimensional.

Proposition 5.9. Let M ⊆ B(H) be a semidiscrete von Neumann algebra and let P ∈ M be a
projection. Then the reduced von Neumann algebra MP is semidiscrete.

Proof. Let ε > 0, T1, . . . , Tn ∈M and ω1, . . . , ωn ∈MP ∗ be given, and �x an ultraweakly continuous
state ρ ∈MP ∗. By Theorem 2.7 and Proposition 2.2, then for all i = 1, . . . , n we have square-summable
sequences (ξin)n≥1 and (ηin)n≥1 in P (H) such that

ωi(T ) =

∞∑
n=1

〈Tξin, ηin〉, T ∈MP ;

hence by de�ning ω′i : M → C for each i by

ω′i(T ) =

∞∑
n=1

〈Tξin, ηin〉, T ∈M ,

we obtain linear functionals ω′i ∈ M∗; moreover, for all T ∈ M , we have ω′i(T ) = ωi(PT |P (H))
and ω′i(T ) = ω′i(TP ) for all T ∈ M since the sequences consist of elements of P (H). Since M is
semidiscrete, then Proposition 5.2 yields a normal, completely positive mapping ϕ ∈ B(M ) of �nite
rank with ϕ(1M ) = 1M , additionally satisfying∣∣ω′i (ϕ(PTiP + ρ(PTi|P (H))(1M − P ))− (PTiP + ρ(PTi|P (H))(1M − P ))

)∣∣ < ε, i = 1, . . . , n,

i.e. we are approximating on the operators PTiP + ρ(Ti)(1M − P ) ∈M . De�ne ψ ∈ B(MP ) by

ψ(T ) = Pϕ(PTP + ρ(T )(1M − P ))|P (H), T ∈MP .

Since PT̃P is uniquely determined by T ∈MP , ψ is well-de�ned. Moreover, since P1P (H)P = P , then
ψ(1P (H)) = 1P (H). ψ clearly has �nite rank by Lemma 5.8. From the same lemma, we see that the
map MP →M , T 7→ PTP is normal and completely positive. Since ρ is ultraweakly continuous and
completely positive by Proposition 3.12 and the map C → M given by λ 7→ λ(1M − P ) is clearly a
normal ∗-homomorphism, then Propositions 3.11 and 3.5 yield that the map

T 7→ PTP + ρ(T )(1M − P ), T ∈MP ,

is normal and completely positive. Hence Lemma 5.8 yields that the same holds for ψ. For the grand
�nale, then for all i = 1, . . . , n we have

|ωi(ψ(PTi|P (H))− PTi|P (H))|
=

∣∣ωi (Pϕ(PTiP + ρ(PTi|P (H))(1M − P ))|P (H) − PTi|P (H)

)∣∣
=

∣∣ω′i (ϕ(PTiP + ρ(PTi|P (H))(1M − P ))− PTiP
)∣∣

=
∣∣ω′i (ϕ(PTiP + ρ(PTi|P (H))(1M − P ))− (PTiP + ρ(PTi|P (H))(1M − P ))P

)∣∣
=

∣∣ω′i (ϕ(PTiP + ρ(PTi|P (H))(1M − P ))− (PTiP + ρ(PTi|P (H))(1M − P ))
)∣∣

< ε.

Hence MP is semidiscrete by Proposition 5.2.

Proposition 5.10. Let M and N be von Neumann algebras. Then M ⊗N is semidiscrete if and
only if M and N are semidiscrete.

Proof. Assume that M and N are semidiscrete. If ϕ ∈ B(M ) and ψ ∈ B(N ) are normal, completely
positive mappings, then there exists a normal, completely positive map ϕ⊗ψ ∈ B(M ⊗N ) satisfying

ϕ⊗ ψ(S ⊗ T ) = ϕ(S)⊗ ψ(T )
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for all S ∈ M and T ∈ N by Corollary 3.18. Moreover, if ϕ and ψ satisfy ϕ(1M ) = 1M and
ψ(1N ) = 1N , then (ϕ ⊗ ψ)(1M ⊗N ) = 1M ⊗ 1N = 1M ⊗N , and if ϕ and ψ are of �nite rank, then
ϕ⊗ψ has �nite rank as well, as �nite-dimensional subspaces of B(M ⊗N ) are ultraweakly closed [14,
Theorem 1.2.17]. Moreover, if ϕ and ψ are of the above form, then ‖ϕ⊗ ψ‖ = 1 by Proposition 3.9.

Let ε > 0, T1, . . . , Tn ∈ M ⊗N and ω1, . . . , ωn ∈ (M ⊗N )∗ be given. We will show that ϕ and ψ
with the properties above can be chosen in a way such that

|ωi((ϕ⊗ ψ)Ti − Ti)| < ε, i = 1, . . . , n.

Suppose �rst that we have found ϕ ⊗ ψ such that the above inequality holds where all ωi are of the
form αi ⊗ βi for αi ∈M∗ and βi ∈ N∗ (see page 76 for an explanation of their construction). For new
ε > 0, T1, . . . , Tn ∈M ⊗N and ω1, . . . , ωn ∈ (M ⊗N )∗, let M = max{‖Ti‖ | i = 1, . . . , n}. Because
M∗ �N∗ is norm-dense in (M ⊗N )∗, we have∥∥∥∥∥∥ωi −

mi∑
j=1

αji ⊗ β
j
i

∥∥∥∥∥∥ < ε

4M

for appropriately chosen αji ∈ M∗ and βji ∈ N∗, where j = 1, . . . ,mi, i = 1, . . . , n. Letting m =∑n
i=1mi and choosing ϕ ∈ B(M ) and ψ ∈ B(N ) with the above properties such that

|(αji ⊗ β
j
i )((ϕ⊗ ψ)(Ti)− Ti)| <

ε

2m
, i = 1, . . . , n, j = 1, . . . ,mi,

we then have for all i = 1, . . . , n that

|ωi((ϕ⊗ ψ)Ti − Ti)| ≤

∥∥∥∥∥∥ωi −
mi∑
j=1

αji ⊗ β
j
i

∥∥∥∥∥∥ ‖(ϕ⊗ ψ)Ti − Ti‖+

mi∑
j=1

‖(αji ⊗ β
j
i )(ϕ⊗ ψ)Ti − Ti‖

≤ ε

4M
· 2M +mi ·

ε

2m

≤ ε

2
+
ε

2
= ε,

proving the result in the general case, so that by Proposition 5.2, M ⊗N is semidiscrete.

To prove the result for ωi of the form αi ⊗ βi for αi ∈ M∗ and βi ∈ N∗, note that since M and N
are semidiscrete, Corollary 5.4 yields normal, completely positive maps ϕ ∈ B(M ) and ψ ∈ B(N ) of
�nite rank with ϕ(1M ) = 1M and ψ(1N ) = 1N such that

‖αi ◦ ϕ− αi‖ <
ε

2K
, ‖βi ◦ ψ − βi‖ <

ε

2K
, i = 1, . . . , n,

where
K = max{‖αi‖+ ‖βi‖ | i = 1, . . . , n} ·max{‖Ti‖ | i = 1, . . . , n}.

Note that for S ∈M and T ∈ N , then

αi ⊗ βi((ϕ⊗ ψ)(S ⊗ T )) = αi(ϕ(S))βi(ψ(T )) = (αi ◦ ϕ)⊗ (βi ◦ ψ)(S ⊗ T ),

so by uniqueness, the ultraweakly continuous functionals (αi⊗ βi) ◦ (ϕ⊗ψ) and (αi ◦ϕ)⊗ (βi ◦ψ) are
equal for all i = 1, . . . , n, with the help of Proposition 2.45. Hence for all i = 1, . . . , n, we see that

|(αi ⊗ βi)((ϕ⊗ ψ)Ti − Ti)| ≤ ‖Ti‖‖(αi ◦ ϕ)⊗ (βi ◦ ψ)− (αi ⊗ βi)‖
≤ ‖Ti‖ (‖(αi ◦ ϕ)⊗ (βi ◦ ψ)− (αi ◦ ϕ)⊗ βi‖+ ‖(αi ◦ ϕ)⊗ βi − (αi ⊗ βi)‖)
≤ ‖Ti‖ (‖αi‖‖βi ◦ ψ − βi‖+ ‖αi ◦ ϕ− αi‖‖βi‖)

<
ε

2K
‖Ti‖(‖αi‖+ ‖βi‖)

≤ ε,

completing the proof of the �rst implication.
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Assume now that M ⊗N is semidiscrete. Let idM : M → M be the identity map and let ρ ∈ N∗
be a �xed ultraweakly normal state. By Proposition 3.12 and Corollary 3.18, there exists a normal,
completely positive map idM ⊗ ρ : M ⊗N →M ⊗C such that

(idM ⊗ ρ)(S ⊗ T ) = S ⊗ ρ(T ), S ∈M , T ∈ N .

As M ⊗C = M ⊗ C by Lemma 1.34, then by letting π : M → M ⊗ C be given by π(T ) = T ⊗ 1
it is clear that π is a ∗-isomorphism. Letting J : M → M ⊗N be given by J(T ) = T ⊗ 1N , it is
clear from the tensor product operator calculus (see page 8) that J is a ∗-homomorphism. Hence if
ϕ ∈ B(M ⊗N ) is normal and completely positive, it de�nes a normal and completely positive map
ϕ′ : M →M given by ϕ′ = π−1 ◦ (idM ⊗ ρ) ◦ ϕ ◦ J , using Proposition 3.11. If ϕ has �nite rank and
ϕ(1M ⊗N ) = 1M ⊗N , then clearly ϕ′ also has �nite rank and maps 1M to 1M .

Let β : C→ C denote the identity. For any positive functional ω ∈M∗, Corollary 3.18 yields a positive
linear functional ω ⊗ β : M ⊗C→ C. Since

(ω ⊗ β) ◦ (idM ⊗ ρ)(S ⊗ T ) = ω(S)ρ(T ) = (ω ⊗ ρ)(S ⊗ T )

for all S ∈M and T ∈ N , and (ω⊗ β) ◦ (idM ⊗ ρ) ∈ (M ⊗N )∗, it follows from uniqueness of ω⊗ ρ,
as noted in the remark before Proposition 3.19, that

(ω ⊗ β) ◦ (idM ⊗ ρ) = ω ⊗ ρ.

Using the fact that any ω ∈M∗ is a linear combination of four positive ultraweakly continuous linear
functionals (Theorem 2.40), the above equality holds for arbitrary ω ∈ M∗. For any given S ∈ M ,
note that

(idM ⊗ ρ)(ϕ(T ⊗ 1N )) = π(ϕ′(T )) = ϕ′(T )⊗ 1 = (idM ⊗ ρ)(ϕ′(T )⊗ 1N ).

Hence if any ω ∈M∗ is given additionally, one sees that

(ω ⊗ ρ)(ϕ(T ⊗ 1N )− T ⊗ 1N ) = ((ω ⊗ β) ◦ (idM ⊗ ρ))(ϕ(T ⊗ 1N )− T ⊗ 1N )

= ((ω ⊗ β) ◦ (idM ⊗ ρ))(ϕ′(T )⊗ 1N − T ⊗ 1N )

= (ω ⊗ ρ)((ϕ′(T )− T )⊗ 1N )

= ω(ϕ′(T )− T )ρ(1N )

= ω(ϕ′(T )− T ).

Now, given ε > 0, ω1, . . . , ωn ∈ M∗ and T1, . . . , Tn ∈ M , then by Proposition 5.2, the semidiscrete�
ness of M ⊗N yields a normal, completely positive map ϕ ∈ B(M ⊗N ) of �nite rank, satisfying
ϕ(1M ⊗N ) = 1M ⊗N and

|(ωi ⊗ ρ)(ϕ(Ti ⊗ 1N )− Ti ⊗ 1N )| < ε, i = 1, . . . , n.

As proved before, ϕ induces a map ϕ′ ∈ B(M ) as above, satisfying

|ωi(ϕ′(Ti)− Ti)| = |(ωi ⊗ ρ)(ϕ(Ti ⊗ 1N )− Ti ⊗ 1N )| < ε, i = 1, . . . , n.

Hence M is semidiscrete by Proposition 5.2. In a similar manner, one sees that N is semidiscrete.

Proposition 5.11. The von Neumann algebra B(H) is semidiscrete for any Hilbert space H.

Proof. Let (Hα)α∈A be the family of all �nite-dimensional subspaces of H, and for each α ∈ A, let Pα
be the orthogonal projection onto Hα. We make A into a directed set by de�ning α ≤ β for α, β ∈ A
if and only if Hα ⊆ Hβ or equivalently Pα ≤ Pβ . Let ρ ∈ B(H)∗ be a �xed normal state. For α ∈ A,
de�ne a map ϕα ∈ B(B(H)) by

ϕα(T ) = PαTPα + ρ(T )(1H − Pα), T ∈ B(H).

This map is normal and completely positive which can be deduced as follows. Clearly the map T 7→
ρ(T )(1H−Pα) for T ∈ B(H) is completely positive by Propositions 3.11 and 3.12 as it is the composition
of the positive functional ρ and the ∗-homomorphism C→ B(H) given by λ 7→ λ(1H−Pα). Moreover,
the aforementioned ∗-homomorphism is normal and ρ is ultraweakly continuous by assumption, so
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normality follows. The map T 7→ PαTPα is clearly ultraweakly-to-ultraweakly continuous and hence
normal. To see that it is completely positive, let n ≥ 1 and let T = (Tij)

n
i,j=1 ∈ Mn(B(H)) be a

positive matrix and note that
PαT11Pα PαT12Pα · · · PαT1nPα
PαT21Pα PαT22Pα · · · PαT2nPα

...
...

...
PαTn1Pα PαTn2Pα · · · PαTnnPα

 =


Pα 0 · · · 0
0 Pα · · · 0
...

...
...

0 0 · · · Pα


∗

T


Pα 0 · · · 0
0 Pα · · · 0
...

...
...

0 0 · · · Pα


is positive. This implies complete positivity of T 7→ PαTPα. The sum of the two maps is normal and
completely positive as well.

We note that ϕα has �nite rank and ϕα(1H) = 1H. Let ω ∈ B(H)∗ and T ∈ B(H), we know from
Proposition 2.2 that ω =

∑∞
i=1 ωξi,ηi for sequences (ξi)i≥1 and (ηi)i≥1 in H such that

∑∞
i=1 ‖ξi‖2 <∞

and
∑∞
i=1 ‖ηi‖2 <∞. Let ε > 0, choose n ≥ 1 such that

∞∑
i=n+1

‖ξi‖2 <
√

ε

3‖T‖
,

∞∑
i=n+1

‖ηi‖2 <
√

ε

3‖T‖

and choose α0 ∈ A such that ξi ∈ Pα0
(H) and Tξi ∈ Pα0

(H) for all i = 1, . . . , n. Then for all α ≥ α0

we �nd that

|ω(ϕα(T )− T )| =

∣∣∣∣∣
∞∑
i=1

〈(PαTPα + ρ(T )(1− Pα)− T )ξi, ηi〉

∣∣∣∣∣
=

∣∣∣∣∣
∞∑

i=n+1

〈(PαTPα + ρ(T )(1− Pα)− T )ξi, ηi〉

∣∣∣∣∣
≤ 3‖T‖

∞∑
i=n+1

‖ξi‖‖ηi‖

≤ 3‖T‖

[ ∞∑
i=n+1

‖ξi‖2
]1/2 [ ∞∑

i=n+1

‖ηi‖2
]1/2

< ε,

so that limα∈A ω(ϕα(T )) = limα∈A ω(T ). Hence B(H) is semidiscrete.

The last theorem will, regrettably, be stated without proof. It contains one of the most useful conditions
equivalent to semidiscreteness, and the proofs of the next section depend extremely much on it.

Theorem 5.12. Let M be a von Neumann algebra. Then the following are equivalent:

(i) M is semidiscrete.

(ii) For any S1, . . . , Sn ∈M and T1, . . . , Tn ∈M ′ it holds that∥∥∥∥∥
n∑
i=1

SiTi

∥∥∥∥∥ ≤
∥∥∥∥∥∑
i=1

Si ⊗ Ti

∥∥∥∥∥
min

,

i.e. the map η : M �M ′ → B(H) satisfying η(S ⊗ T ) = ST is contractive with respect to the
minimal norm.

In particular, M is semidiscrete if and only if M ′ is semidiscrete.

Proof. Omitted. See [28, Theorem 4.11].
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5.3 The equivalence of semidiscreteness and injectivity

We now embark on perhaps the most deep collection of theorems that this project can o�er � just in
time. The purpose here is, true to the title, to prove that semidiscreteness is equivalent to injectivity,
and the proof takes us through results of all the previous chapters. Hilbert-Schmidt operators and
continuous crossed products also make a surprise visit, only emphasizing that the proof is tremendously
nontrivial.

Before going to the �rst big result, we will prove a nice result concerning the state space of the
C∗-algebra B(H).

Lemma 5.13. Let H be a Hilbert space. Then the set of weakly continuous states is weak∗-dense in
S(B(H)). �Weakly� can be replaced by �ultraweakly�.

Proof. Let T ∈ B(H)sa and note that 〈Tξ, ξ〉 ≥ 0 for all ξ ∈ H with ‖ξ‖ = 1 implies T ≥ 0. Then it
follows from Proposition 0.7 and Lemma A.4 that any ϕ ∈ S(B(H)) is the weak∗-limit of states of the
form ωξ1 + . . .+ ωξn for ξ1, . . . , ξn ∈ H. The last statement follows immediately.

It should be noted now that if a von Neumann algebra is �nite (De�nition 4.8) and σ-�nite (De�nition
2.11) then there exists a normal faithful tracial state τ : M → C. A proof is given in [1, Corollary
III.2.5.8].

Proposition 5.14. Let M ⊆ B(H) be a �nite, σ-�nite and injective von Neumann algebra with a
normal faithful tracial state τ on M (see e.g. [1, Corollary III.2.5.8]). Let S1, . . . , Sn, T1, . . . , Tn ∈M
and ε > 0 be given. Then there is a positive Hilbert-Schmidt operator P ∈ B(H) such that

(i) ‖P‖2 = 1;
(ii) |〈SiP, P 〉2 − τ(Si)| ≤ ε for all i = 1, . . . , n;
(iii) ‖TiP − PTi‖2 ≤ ε for all i = 1, . . . , n.

Proof. Since every element in M is a linear combination of unitary operators, we may as well assume
that T1, . . . , Tn are unitaries (after proving the result for unitaries, the general case follows from
choosing a smaller ε than the one given).

Let E : B(H) → M be a projection of norm 1. Then τ ◦ E is a state on B(H). By Lemma 5.13, we
can �nd a net (ϕα)α∈A of normal states on B(H) such that ϕα → τ ◦ E in the weak∗ topology. For
all i = 1, . . . , n and α ∈ A, we have Ti · ϕα − ϕα · Ti ∈ B(H)∗ by Lemma 2.36 and Theorem 2.40, and
hence for S ∈ B(H) we �nd that

(Ti · ϕα − ϕα · Ti)(S) = ϕα(STi − TiS)→ τ(E(STi − TiS)) = τ(E(S)Ti − TiE(S)) = 0

by Tomiyama's theorem and the fact that τ is a trace. Therefore Ti · ϕα − ϕα · Ti → 0 in the weak
topology on B(H)∗, since the space of bounded linear functionals on B(H)∗ can be identi�ed with
B(H) by Proposition 2.5. Note that by �weak topology�, we do not mean �weak operator topology�
but the coarsest topology such that all bounded linear functionals on B(H)∗ are continuous.

We now consider the vector space V = (B(H)∗)
n ⊕ B(H)∗ equipped with two topologies σ1 and σ2.

They are given as follows:

q σ1 is the product of the weak topology on B(H)∗ and the weak∗ topology on B(H)∗.
q σ2 is the product of the norm topology on B(H)∗ and the weak∗ topology on B(H)∗.

Note that σ2 is �ner than σ1. Any linear functional ω on V that is continuous with respect to σ1 can
be written in the form

ω(ψ1, . . . , ψn+1) =

n+1∑
i=1

ωi(ψi), ψ1, . . . , ψn ∈ B(H)∗, ψn+1 ∈ B(H)∗

where ωi : B(H)∗ → C for i = 1, . . . , n are linear functionals on B(H)∗ continuous with respect to the
weak topology and ωn+1 : B(H)∗ → C is a weak∗-continuous linear functional. This can formulated
similarly for functionals that are continuous with respect to σ2. Because (B(H)∗)

∗ precisely consists
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of the linear functionals that are continuous with respect to the weak topology on B(H)∗, it follows
that the set of continuous linear functionals on (V, σ1) and (V, σ2) are the same. Hence it follows for
any convex set S ⊆ V , that the closures of S under σ1 and σ2 are equal (see e.g. [22, Theorems 3.10
and 3.12]).

De�ne Φα ∈ V for α ∈ A and Φ ∈ V by

Φα = (T1 · ϕα − ϕα · T1, . . . , Tn · ϕα − ϕα · Tn, ϕα), Φ = (0, . . . , 0, τ ◦ E),

and let S be the convex hull of the set of all Φα for α ∈ A, i.e. the set of �nite convex combinations
of Φα's. Because S ⊆ V is convex and Φ is contained in the closure of S in the σ1 topology, it is also
contained in the closure of S in the σ2 topology. Let α1, . . . , αn ∈ A and λ1, . . . , λn ∈ [0, 1] such that∑n
i=1 λi = 1. If ϕ =

∑n
i=1 λiϕαi , then any element of S is of the form

λ1Φα1
+ . . .+ λnΦαn = (T1 · ϕ− ϕ · T1, . . . , Tn · ϕ− ϕ · Tn, ϕ).

As Φ is now contained in the closure of S in the σ2 topology, the above observation yields a net
(ψβ) ⊆ B(H)∗ of convex combinations of various ϕα such that ‖Ti ·ψβ−ψβ ·Ti‖ → 0 for all i = 1, . . . , n
and ψβ → τ ◦E in the weak∗-topology on B(H)∗. That is not all, however: since all ϕα are ultraweakly
continuous states and S(B(H)) is convex, it follows that all ψβ are ultraweakly continuous states as
well. The existence of the above net thus yields a state ψ ∈ B(H)∗ such that ‖Ti · ψ − ψ · Ti‖ ≤ ε2

and |ψ(Si)− τ(E(Si))| < ε for all i = 1, . . . , n. By Theorem B.16, there is a unique positive trace class
operator R ∈ T (H) with ‖R‖1 = ‖ψ‖ = 1 and ψ(T ) = tr(RT ) for all T ∈ B(H).

We now claim that P = R1/2 is the desired Hilbert-Schmidt operator. P is a positive Hilbert-Schmidt
operator by Proposition B.8, with

‖P‖2 = ‖R‖1/21 = 1.

Furthermore, for all T ∈ B(H), TP is Hilbert-Schmidt by Proposition B.7 and

〈TP, P 〉2 = tr(PTP ) = tr(P 2T ) = tr(RT ) = ψ(T )

by Corollary B.15. In particular,

|〈SiP, P 〉2 − τ(Si)| = |ψ(Si)− τ(E(Si))| < ε

for all i = 1, . . . , n. Hence P satis�es the conditions (i) and (ii).

Let i = 1, . . . , n. Since Ti is unitary, we have ‖TiP − PTi‖2 = ‖TiPT ∗i − P‖2 by Proposition B.7. The
Powers-Størmer inequality (Proposition B.21) then yields

‖TiPT ∗i − P‖2 ≤ ‖TiP 2T ∗i − P 2‖1/21 ,

as TiP 2T ∗i = (TiPT
∗
i )2. Moreover, TiP 2T ∗i is a trace class operator, so

tr(TiP
2T ∗i T ) = tr(RTiTT

∗
i ) = ψ(TiTT

∗
i ) = (T ∗i · ψ · Ti)(T ), T ∈ B(H).

As T ∗i · ψ · Ti ∈ B(H)∗ by Lemma 2.36 and Theorem 2.40, we then have

(T ∗i · ψ · Ti − ψ)(T ) = tr((TiP
2T ∗i − P 2)T ), T ∈ B(H).

Therefore ‖T ∗i · ψ · Ti − ψ‖ = ‖T ∗i P 2Ti − P 2‖1 by Theorem B.16, so

‖TiP 2T ∗i − P 2‖1/21 = ‖T ∗i · ψ · Ti − ψ‖1/2 = ‖T ∗i · (ψ · Ti)− T ∗i · (Ti · ψ)‖1/2 ≤ ‖ψ · Ti − Ti · ψ‖1/2 < ε.

Hence
‖TiP − PTi‖2 = ‖TiPT ∗i − P‖2 ≤ ‖TiP 2T ∗i − P 2‖1/21 < ε

for all i = 1, . . . , n, so (iii) is satis�ed as well.

In the next big theorem, we will need the notion of a conjugate von Neumann algebra about which
Section B.2 should provide su�cient information. The reason that we do not relegate the following
lemma (in its own right, it is really a theorem) to that section is that we might as well keep all
results concerning tracial states together, as well as the fact that it lays some of the groundwork for
a branch of von Neumann algebra theory called Tomita-Takesaki theory. We merely seek to underline
its importance by putting it here with the other very serious theorems of this section.
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Lemma 5.15 (The commutation theorem). Let M be a von Neumann algebra allowing for a faithful
normal tracial state τ : M → C. Then there exists a Hilbert space H such that M is ∗-isomorphic to
a von Neumann algebra N ⊆ B(H), a cyclic vector ξ0 ∈ H for N and a conjugate linear isometry
J : H → H that satis�es

(i) J2 = 1H;
(ii) the map α : B(H)→ B(H) given by α(T ) = JTJ is a well-de�ned conjugate linear isomorphism;
(iii) α|N is a conjugate linear unital ∗-algebra homomorphism.
(iv) JN J = N ′, so α|N is in fact an isomorphism onto N ′;
(v) if N ⊆ B(H) denotes the conjugate von Neumann algebra of N , then the map N → N ′ given

by T 7→ JTJ for T ∈ N is a unital ∗-isomorphism.

Proof. By (the proof of) Proposition 2.58, the GNS triple (π,H, ξ0) corresponding to τ consists of a
faithful normal representation π : M → B(H), and moreover ξ0 is a cyclic and separating vector for
the von Neumann algebra π(M ). Let N = π(M ).

Because ξ0 is cyclic, N ξ0 is dense in H, and because ξ0 is separating, the map N → N ξ0 given by
T 7→ Tξ0 is a bijection. Hence we can transfer the ∗-algebra structure of N to N ξ0 by de�ning

(Sξ0)(Tξ0) := (ST )ξ0, (Tξ0)∗ := T ∗ξ0, S, T ∈ N .

Since
‖Tξ0‖2 = 〈Tξ0, T ξ0〉 = 〈T ∗Tξ0, ξ0〉 = τ(T ∗T ) = τ(TT ∗) = 〈TT ∗ξ0, ξ0〉 = ‖T ∗ξ0‖2

because τ is a trace, then by Proposition A.1, the ∗-operation on N ξ0 extends to a conjugate linear
isometry J : H → H. We have J2 = 1H, by continuity of J and the fact that J2Sξ0 = Sξ0 for all
S ∈ N .

For (ii) note that α is �rst of all well-de�ned: for all T ∈ B(H), JTJ is linear and

‖JTJξ‖ = ‖TJξ‖ ≤ ‖T‖‖Jξ‖ = ‖T‖‖ξ‖.

α is conjugate linear, and moreover injective, since JTJ = 0 implies T = J(JTJ)J = 0, and surjective,
since α(JTJ) = T for all T ∈ B(H). Hence α is a conjugate linear isomorphism, and (ii) is obtained.

For S, T, V ∈ N , we have

〈JTJSξ0, V ξ0〉 = 〈ST ∗ξ0, V ξ0〉 = τ(V ∗ST ∗) = τ(T ∗V ∗S) = 〈Sξ0, V Tξ0〉 = 〈Sξ0, JT ∗JV ξ0〉,

so by continuity, α(T )∗ = α(T ∗) for all T ∈ N . Also, for S, T ∈ N , we have (JSJ)(JTJ) = J(ST )J ,
so α is multiplicative as well, and that α is unital is clear. Hence (iii) follows.

(iv) is the one that will require the most work. For T ∈ N , then for all S,A ∈ N we have

(JTJ)SAξ0 = SAT ∗ξ0 = S(JT )A∗ξ0 = S(JTJ)Aξ0,

so (JTJ)S = S(JTJ) and hence α(N ) = JN J ⊆ N ′. Now, for S′ ∈ N ′, note that for T ∈ N , we
have

〈JS′ξ0, T ξ0〉 = 〈T ∗(S′)∗ξ0, ξ0〉 = 〈(S′)∗T ∗ξ0, ξ0〉 = 〈ξ0, TS′ξ0〉 = 〈ξ0, S′Tξ0〉 = 〈(S′)∗ξ0, T ξ0〉.

Hence
JS′ξ0 = (S′)∗ξ0, S′ ∈ N ′

by a continuity and density argument. To show N ′ ⊆ JN J , we can instead prove JN ′J ⊆ N = N ′′

since J2 = 1H. Therefore let S′, T ′ ∈ N ′. We will show that JS′J and T ′ commute, so that
JS′J ⊆ N ′′ = N . For any T ∈ N , we have

(JS′J)T ′(Tξ0) = (JS′J)TT ′ξ0 = JS′(JTJ)(JT ′ξ0) = JS′α(T )(T ′)∗ξ0

by what we proved above. Since S′, α(T ) and (T ′)∗ are contained in N ′ then S′α(T )(T ′)∗ ∈ N ′, so
we now �nd that

J(S′α(T )(T ′)∗)ξ0 = T ′α(T ∗)(S′)∗ξ0 = T ′JT ∗J(S′)∗ξ0 = T ′JT ∗S′ξ0 = T ′JS′T ∗ξ0 = T ′(JS′J)Tξ0.
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Hence (JS′J)T ′ = T ′(JS′J) by continuity, so equality follows.

For (v), we prove in Section B.2 that the map T 7→ T is a conjugate linear, multiplicative, unital and
adjoint-preserving isomorphism. Restricting its inverse to N and composing with α yields the desired
∗-isomorphism, since the composition of two conjugate linear maps is linear.

We now proceed to a really great result, reaping the harvest we have sown with Theorem 5.14.

Theorem 5.16. Let M be a σ-�nite, �nite and injective von Neumann algebra with a faithful normal
tracial state τ : M → C. Then M is semidiscrete.

Proof. Let H be the Hilbert space and N ⊆ B(H) the von Neumann algebra ∗-isomorphic to M
of Lemma 5.15 with cyclic vector ξ0 ∈ H, with J : H → H being the conjugate linear isometry. It
will su�ce to prove that N is semidiscrete. Letting N ⊆ B(H) denote the conjugate von Neumann
algebra of N , the map N → N ′ given by T 7→ JTJ for T ∈ N is an isometric ∗-isomorphism by
Lemma 5.15. Hence it induces a ∗-isomorphism N ⊗min N → N ⊗min N ′ that must be isometric.
To prove that N is semidiscrete is equivalent to proving, by Theorem 5.12, that the ∗-homomorphism
η : N �N ′ → B(H) given by

η

 n∑
j=1

Sj ⊗ Tj

 =

n∑
j=1

SjTj

(see Proposition 1.17) is contractive with respect to ‖·‖min on N �N ′. From the above considerations,
this is equivalent to proving that the ∗-homomorphism η′ : N �N → B(H) given by

η′

 n∑
j=1

Sj ⊗ Tj

 =

n∑
j=1

SjJTjJ

is contractive with respect to ‖·‖min on N �N ′, by means of the isometric ∗-isomorphism N ⊗minN →
N ⊗min N ′.

To show this, note that since ξ0 is cyclic for N , it follows that it is cyclic for η′(N � N ) as well
because η′(T � 1H) = T for all T ∈ N . It will therefore su�ce to prove that ωξ0 ◦ η′ is contractive
with respect to ‖ · ‖min. To do this, we will regard τ as a tracial state on N .

For S1, . . . , Sn ∈ N and T1, . . . , Tn ∈ N we �nd

ωξ0(η′(

n∑
j=1

Sj ⊗ Tj)) =

〈
n∑
j=1

SjJTjJξ0, ξ0

〉
=

〈
n∑
j=1

SjT
∗
j ξ0, ξ0

〉
= τ

 n∑
j=1

SjT
∗
j

 .

Thus we have to prove ∣∣∣∣∣∣τ
 n∑
j=1

SjT
∗
j

∣∣∣∣∣∣ ≤
∥∥∥∥∥
n∑
i=1

Sj ⊗ Tj

∥∥∥∥∥
min

.

Let ε > 0 be given. From Proposition 5.14, we obtain the existence of a Hilbert-Schmidt operator
P ∈ B(H) such that ‖P‖2 = 1 and∣∣∣∣∣∣

〈
n∑
j=1

SjT
∗
j P, P

〉
2

− τ

 n∑
j=1

SjT
∗
j

∣∣∣∣∣∣ ≤ ε,
n∑
j=1

‖T ∗j P − PT ∗j ‖2‖Sj‖ ≤ ε.
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To see this, apply Proposition 5.14 to the operators S1T
∗
1 , . . . , SnT

∗
n and ‖S1‖T ∗1 , . . . , ‖Sn‖T ∗n of N .

Now we obtain ∣∣∣∣∣∣τ
 n∑
j=1

SjT
∗
j

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
〈

n∑
j=1

SjT
∗
j P, P

〉
2

∣∣∣∣∣∣+ ε

≤

∥∥∥∥∥∥
n∑
j=1

SjT
∗
j P

∥∥∥∥∥∥
2

‖P‖2 + ε

≤

∥∥∥∥∥∥
n∑
j=1

SjPT
∗
j +

n∑
j=1

Sj(T
∗
j P − PT ∗j )

∥∥∥∥∥∥
2

+ ε

≤

∥∥∥∥∥∥
n∑
j=1

SjPT
∗
j

∥∥∥∥∥∥
2

+

n∑
j=1

‖Sj(T ∗j P − PT ∗j )‖2 + ε

≤

∥∥∥∥∥∥
n∑
j=1

SjPT
∗
j

∥∥∥∥∥∥
2

+

n∑
j=1

‖Sj‖‖(T ∗j P − PT ∗j )‖2 + ε

≤

∥∥∥∥∥∥
n∑
j=1

SjPT
∗
j

∥∥∥∥∥∥
2

+ 2ε.

By Proposition B.19, P corresponds to a unit vector ξ ∈ H ⊗ H. For any j = 1, . . . , n, then by
Proposition B.20, SjP corresponds to (Sj ⊗ 1H)ξ and hence SjPT ∗j corresponds to the vector

(1H ⊗ Tj)(Sj ⊗ 1H)ξ = (Sj ⊗ Tj)ξ.

Hence ∥∥∥∥∥∥
n∑
j=1

SjPT
∗
j

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
n∑
j=1

(Sj ⊗ Tj)ξ

∥∥∥∥∥∥
B(H⊗H)

≤

∥∥∥∥∥∥
n∑
j=1

Sj ⊗ Tj

∥∥∥∥∥∥
B(H⊗H)

.

Therefore ∣∣∣∣∣∣τ
 n∑
j=1

SjT
∗
j

∣∣∣∣∣∣ ≤
∥∥∥∥∥∥
n∑
j=1

Sj ⊗ Tj

∥∥∥∥∥∥
B(H⊗H)

+ 2ε =

∥∥∥∥∥∥
n∑
j=1

Sj ⊗ Tj

∥∥∥∥∥∥
min

+ 2ε,

as the identity maps on N and N are faithful representations. Since ε was arbitrary, it follows that∣∣∣∣∣∣τ
 n∑
j=1

SjT
∗
j

∣∣∣∣∣∣ ≤
∥∥∥∥∥∥
n∑
j=1

Sj ⊗ Tj

∥∥∥∥∥∥
min

.

This completes the proof.

It is now time to call in the continuous crossed product from Chapter 4, giving us another criterion
for a σ-�nite von Neumann algebra to be semidiscrete.

Theorem 5.17. Let M ⊆ B(H) be a σ-�nite von Neumann algebra with a faithful normal state
ω ∈M∗ and assume that R(M , σωt ) is semidiscrete. Then M is semidiscrete.

Proof. We will prove that M satis�es the condition of Theorem 5.12. We remember �rst that the con�
tinuous crossed product R(M , σωt ) is the von Neumann algebra in B(L2(R),H) generated by elements
of the form π(T ) for T ∈M and λ(t) for t ∈ R, where

(π(T )f)(s) = σωs (T )f(s), f ∈ Cc(R,H), s ∈ R

and
(λ(t)f)(s) = f(t−1s), f ∈ Cc(Γ,H), s ∈ Γ.
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Since R(M , σωt ) embeds into M ⊗B(L2(R)) by Corollary 4.17 and can hence be viewed as a subset,
it follows that M ′ ⊗ 1L2(R) ⊆ R(M , σωt )′ by Proposition 1.35.

Assuming that R(M , σωt ) is semidiscrete, then it follows from Theorem 5.12 that∥∥∥∥∥
n∑
i=1

π(Si)π
′(Ti)

∥∥∥∥∥ ≤
∥∥∥∥∥
n∑
i=1

π(Si)⊗ π′(Ti)

∥∥∥∥∥
min

for all S1, . . . , Sn ∈M and T1, . . . , Tn ∈M ′, where

π′ : M ′ → B(H)⊗B(L2(R)) = B(H⊗ L2(R)) = B(L2(R,H))

is given by π′(T ) = T ⊗ 1L2(R). π : M → B(L2(R,H)) is by construction a faithful representation of
M and π′ : M ′ → B(L2(R,H)) is clearly faithful. Therefore Theorem 1.43(ii) tells us that∥∥∥∥∥

n∑
i=1

Si ⊗ Ti

∥∥∥∥∥
min

=

∥∥∥∥∥
n∑
i=1

π(Si)⊗ π′(Ti)

∥∥∥∥∥
B(L2(R,H)⊗L2(R,H))

=

∥∥∥∥∥
n∑
i=1

π(Si)⊗ π′(Ti)

∥∥∥∥∥
min

,

where the last equality follows from noting that the identity maps on B(L2(R,H)) are faithful repre�
sentations. Hence we have ∥∥∥∥∥

n∑
i=1

π(Si)π
′(Ti)

∥∥∥∥∥ ≤
∥∥∥∥∥
n∑
i=1

Si ⊗ Ti

∥∥∥∥∥
min

for all S1, . . . , Sn ∈M and T1, . . . , Tn ∈M ′. Hence if we prove∥∥∥∥∥
n∑
i=1

SiTi

∥∥∥∥∥ ≤
∥∥∥∥∥
n∑
i=1

π(Si)π
′(Ti)

∥∥∥∥∥
for all such operators, it follows from Theorem 5.12 that M is semidiscrete.

If ‖
∑n
i=1 SiTi‖ = 0, then the inequality is trivial, so we can assume that ‖

∑n
i=1 SiTi‖ 6= 0. Take

ξ ∈ H with ‖ξ‖ = 1 that satis�es
∑n
i=1 SiTiξ 6= 0. As the function t 7→ σωt (S) for t ∈ R is strongly

continuous for all S ∈M , it follows that the function

β : t 7→

∥∥∥∥∥
n∑
i=1

σω−t(Si)Tiξ

∥∥∥∥∥ , t ∈ R

is continuous. Moreover, since σω is a group homomorphism, then σω0 is the identity mapping on M ,
so

β(0) =

∥∥∥∥∥
n∑
i=1

SiTiξ

∥∥∥∥∥ .
Let 0 < ε < β(0); by continuity of β, we can take δ > 0 such that |t| < δ implies β(0) − β(t) < ε.
Hence β(t) > β(0)− ε > 0 for all |t| < δ.

Let g ∈ Cc(R) be your favourite continuous function with support contained in the interval (−δ, δ)
and ‖g‖2 = 1, and de�ne f ∈ Cc(R,H) by f(t) = g(t)ξ for t ∈ R, so that f = ξ ⊗ g when seen as
an element of H ⊗ L2(R) by Proposition 4.13. For any T ∈ M ′, we hence have π′(T )f = Tξ ⊗ g or
(π′(T )f)(t) = g(t)Tξ for all t ∈ R. Therefore

(π(S)π′(T )f)(t) = g(t)σωt (S)Tξ, S ∈M , T ∈M ′, t ∈ R.

Note that π(S)π′(T )f ∈ Cc(R,H), so this also holds for all �nite linear combinations of functions
π(S)π′(T )f for S ∈M and T ∈M ′. Additionally,

‖f‖2 = 〈f, f〉 =

∫
R
|g(t)|2‖ξ‖2dt = ‖g‖22 = 1,
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so ‖f‖ = 1. This groundwork �nally yields∥∥∥∥∥
n∑
i=1

π(Si)π
′(Ti)

∥∥∥∥∥
2

≥

∥∥∥∥∥
n∑
i=1

π(Si)π
′(Ti)f

∥∥∥∥∥
2

=

∫
R

∥∥∥∥∥
n∑
i=1

(π(Si)π
′(Ti)f)(t)

∥∥∥∥∥
2

dt

=

∫
R

∥∥∥∥∥
n∑
i=1

σωt (Si)Tiξ

∥∥∥∥∥
2

|g(t)|2dt

=

∫ δ

−δ
β(t)2|g(t)|2dt

≥
∫ δ

−δ
(β(0)− ε)2|g(t)|2dt

= (β(0)− ε)2

∫ δ

−δ
|g(t)|2dt = (β(0)− ε)2.

Since this holds for arbitrary 0 < ε < β(0), we conclude that∥∥∥∥∥
n∑
i=1

SiTiξ

∥∥∥∥∥ = β(0) ≤

∥∥∥∥∥
n∑
i=1

π(Si)π
′(Ti)

∥∥∥∥∥ .
Taking the supremum over all ξ ∈ H with ‖ξ‖ = 1, we �nally obtain the inequality∥∥∥∥∥

n∑
i=1

SiTi

∥∥∥∥∥ =

∥∥∥∥∥
n∑
i=1

π(Si)π
′(Ti)

∥∥∥∥∥ ≤
∥∥∥∥∥
n∑
i=1

Si ⊗ Ti

∥∥∥∥∥
min

for all S1, . . . , Sn ∈M and T1, . . . , Tn ∈M ′, so M is semidiscrete.

We now �nally have all we need to jump to la grande �nale of this project that all of our previous
achievements have been working towards. Not surprisingly, it uses a variety of di�erent results, making
the proof a tribute in some way to what we have proved up until now.

Theorem 5.18. Let M be a von Neumann algebra. Then M is injective if and only if M is semidis�
crete.

Proof. By Proposition 2.59,
M ∼=

⊕
α∈A

(MPα ⊗B(Kα))Qα ,

where Kα is a Hilbert space, Pα ∈ M and Qα ∈ MPα ⊗B(Kα) are projections, and MPα is σ-�nite
for all α ∈ A. By Propositions 4.1, 4.7, 4.2, 4.12 and 4.8, we see that M is injective if and only if MPα

is injective for all α ∈ A. By Propositions 5.1, 5.7, 5.11, 5.10 and 5.9, we see that M is semidiscrete
if and only if MPα is semidiscrete for all α ∈ A. Since each MPα is σ-�nite, we see that it su�ces to
prove the result for σ-�nite von Neumann algebras, so we can from here onward assume that M is
σ-�nite. By Propositions 2.58, 4.1 and 5.1, we can furthermore assume that M ⊆ B(H) has a faithful
normal state ω ∈M∗ and a cyclic and separating unit vector ξ ∈ H. It follows from Proposition 2.21
that ξ is also cyclic and separating for M ′.

Assume �rst that M is semidiscrete. De�ning the map θ : M → (M ′)∗ by

θ(T )(T ′) = 〈TT ′ξ, ξ〉,

Proposition 3.23 tells us that θ is completely positive. The map M ×M ′ → C given by (T, T ′) 7→
θ(T )(T ′) is bilinear and hence induces a unique linear functional ϕ : M �M ′ → C. For all S1, . . . , Sn ∈
M and T1, . . . , Tn ∈M ′, we then have

ϕ

( n∑
i=1

Si ⊗ Ti

)∗ n∑
j=1

Sj ⊗ Tj

 =

n∑
i,j=1

〈S∗i SjT ∗i Tjξ, ξ〉 = θ(n)((S∗i Sj)
n
i,j=1)((T ∗i Tj)

n
i,j=1) ≥ 0,
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so ϕ(x∗x) ≥ 0 for all x ∈M �M ′. If η : M �M ′ → B(H) is the map given by

η

(
n∑
i=1

Si ⊗ T ′i

)
=

n∑
i=1

SiT
′
i ,

then ϕ = ωξ ◦ η. Since M is semidiscrete, Theorem 5.12 yields that η is contractive with respect to
‖ · ‖min, so ϕ is contractive with respect to ‖ · ‖min as well. Hence ϕ extends to a positive contractive
linear functional ϕ̃ : M ⊗min M ′ → C by Proposition A.1 (positivity follows from continuity and
algebraic positivity). As ϕ(1H ⊗ 1H) = 1, ϕ̃ is then a state by [31, Theorem 11.5].

Since M ⊗min M ′ embeds naturally into B(H) ⊗min M ′ by [4, Proposition 3.6.1], the Hahn-Banach
theorem allows for an extension of ϕ̃ to a state Φ ∈ S(B(H) ⊗min M ′) by Lemma 2.41. De�ne
θ̃ : B(H)→ (M ′)∗ by

θ̃(T )(T ′) = Φ(T ⊗ T ′).

Note that for S ∈M , we have

θ̃(S)(T ′) = Φ(S ⊗ T ′) = ϕ(S ⊗ T ′) = θ(S)(T ′),

and more speci�cally that θ̃(1H)(T ′) = θ(1H)(T ′) = ωξ(T
′) for all T ′ ∈ M ′. For positive T ∈ B(H)

and T ′ ∈M ′, then T = S∗S and T ′ = (S′)∗S′ for S ∈ B(H) and S′ ∈M ′, so that

θ̃(T )(T ′) = Φ((S ⊗ S′)∗(S ⊗ S′)) ≥ 0.

Hence θ̃(T ) is a positive linear functional on M ′ for all positive T ∈ B(H). If T ∈ B(H) is non-zero
and positive with λ = ‖T‖, then 0 ≤ λ−1T ≤ 1H, and hence θ̃(λ−1T ) ≤ θ̃(1H) = ωξ. Using the
notation of Proposition 3.23, θ̃(λ−1T ) is then contained in

Cξ = {ϕ ∈ (M ′)∗ | 0 ≤ ϕ ≤ ωξ},

so that θ̃(T ) and hence θ̃(B(H)) is contained in the complex linear span E of Cξ, since any operator
in a unital C∗-algebra is a �nite linear combination of positive operators [31, Theorem 11.2].

For all T1, . . . , Tn ∈ B(H) and T ′1, . . . , T
′
n ∈M ′, we see that

n∑
i,j=1

θ̃(T ∗i Tj)(T
′∗
i T
′
j) =

n∑
i,j=1

Φ((Ti ⊗ T ′i )∗(Tj ⊗ T ′j)) = Φ

((
n∑
i=1

Ti ⊗ T ′i

)∗( n∑
i=1

Ti ⊗ T ′i

))
≥ 0,

so Proposition 3.22 tells us that θ̃ is completely positive. Moreover, we proved in Proposition 3.23 that
θ : M → E is a completely positive linear isomorphism with a completely positive inverse. De�ning
E : B(H)→M by

E = θ−1 ◦ θ̃,

E is then completely positive and for T ∈M , E(T ) = T . Hence M is injective.

For the converse, assume that M is injective. By Corollary 4.22, the continuous crossed product
N = R(M , σωt ) is injective. Moreover, N is a semi�nite von Neumann algebra by Theorem 4.19.
Hence the identity of N is a semi�nite projection. By [10, Corollary III.2.4.2], there exists a �nite
projection P ∈ N that has the same central support as the identity; therefore CP = 1N . Hence NP

is �nite and also injective by Proposition 4.8.

To see that NP is semidiscrete, note that by repeating the handling of Proposition 2.59 in beginning of
the proof, we only need to prove that all σ-�nite reduced von Neumann algebras of NP are semidiscrete.
But by Proposition 4.8, any reduced von Neumann algebra of NP is injective and by [10, Proposition
I.6.8.11], any such is also �nite. Hence Theorem 5.16 implies that any σ-�nite reduced von Neumann
algebra of NP is semidiscrete, so NP is semidiscrete itself.

We now want to pass back to N . Since CP = 1N , then by Lemma 2.55, N is isomorphic to a
reduced von Neumann algebra of NP ⊗B(K) for some Hilbert space K. Propositions 5.11 and 5.10
yield that NP ⊗B(K) is semidiscrete, in turn yielding that N is semidiscrete by Propositions 5.9 and
5.1. Theorem 5.17 now tells us that M is semidiscrete, completing the proof.
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And there we go. As promised in Theorem 5.5, we bring a theorem that puts the �nal piece of this
humongous jigsaw puzzle into place. The proof somewhat resembles the proof of the previous theorem.

Theorem 5.19. Let A be a ⊗-nuclear C∗-algebra. Then A∗∗ is injective.

Proof. Let ϕ ∈ S(A) and let (Hϕ, πϕ, ξϕ) be its associated GNS triple. Note that ϕ = ωξϕ ◦ πϕ by
construction. Letting C = {ψ ∈ A∗ | 0 ≤ ψ ≤ ϕ} and E be the complex linear span of C, we de�ne
θϕ : πϕ(A)′ → E by

θϕ(T )(a) = 〈Tπϕ(a)ξϕ, ξϕ〉, T ′ ∈ πϕ(A)′, a ∈ A.

By Proposition 3.23, θϕ is completely positive with a completely positive inverse.

Let B = A � πϕ(A)′. The map (a, T ) 7→ θϕ(T )(a) for a ∈ A and T ∈ πϕ(A)′ is bilinear and hence
induces a linear functional ψ : B → C such that ψ(a ⊗ T ) = θϕ(T )(a). For all a1, . . . , an ∈ A and
T1, . . . , Tn ∈M ′, we then have

ψ

( n∑
i=1

ai ⊗ Ti

)∗ n∑
j=1

aj ⊗ Tj

 =

n∑
i,j=1

〈πϕ(a∗i aj)T
∗
i Tjξϕ, ξϕ〉 = θ(n)

ϕ ((T ∗i Tj)
n
i,j=1)((a∗i aj)

n
i,j=1) ≥ 0,

so ψ(x∗x) ≥ 0 for all x ∈ B. Moreover, by Proposition 1.17 there is an induced representation
Ω: B → B(Hϕ) such that

Ω(a⊗ T ) = Tπϕ(a), a ∈ A, T ∈ πϕ(A)′.

As ‖Ω(x)‖ ≤ ‖x‖max for all x ∈ B, it follows for x =
∑n
i=1 ai ⊗ Ti ∈ B that

|ψ(x)| =

∣∣∣∣∣
n∑
i=1

θϕ(Ti)(ai)

∣∣∣∣∣ ≤
∣∣∣∣∣
〈

n∑
i=1

Tπϕ(a)ξϕ, ξϕ

〉∣∣∣∣∣ ≤ ‖
n∑
i=1

Tπϕ(a)‖‖ξϕ‖2 = ‖Ω(x)‖ ≤ ‖x‖max,

so ψ is ‖ · ‖max-continuous and therefore ‖ · ‖min-continuous, since A is ⊗-nuclear. Therefore ψ extends
to a positive contractive linear functional ψ̃ : A⊗min πϕ(A)′ → C by Proposition A.1 (again, positivity
follows from continuity algebraic positivity of ψ).

Since A⊗minπϕ(A)′ embeds naturally into A⊗minB(Hϕ) by Theorem 1.43, the Hahn-Banach theorem
allows for an extension of ψ̃ to a contractive linear functional Ψ ∈ A ⊗min B(Hϕ) by Lemma 2.41.
De�ne θ̃ϕ : B(H)→ A∗ by

θ̃ϕ(T )(a) = Ψ(a⊗ T ).

For all a ∈ A, we then have

θ̃ϕ(T )(a) = Ψ(a⊗ T ) = ϕ(a⊗ T ) = θϕ(T )(a),

and more speci�cally that θ̃ϕ(1Hϕ)(a) = θϕ(1Hϕ)(a) = ϕ(a) for all a ∈ A. For positive T ∈ B(H)

and a ∈ A, then T = S∗S and a = b∗b for some S ∈ B(H) and b ∈ A, so that θ̃ϕ(T )(a) = Ψ((b ⊗
S)∗(b ⊗ S)) ≥ 0. Hence θ̃ϕ(T ) is a positive linear functional on A for all positive T ∈ B(H). Finally,
if T ∈ B(Hϕ) is non-zero and positive with λ = ‖T‖, then 0 ≤ λ−1T ≤ 1Hϕ , and hence θ̃ϕ(λ−1T ) ≤
θ̃ϕ(1H) = ϕ. Hence θ̃ϕ(λ−1T ) is then contained in C so that θ̃ϕ(T ) and hence θ̃ϕ(B(H)) is contained in
E, since any operator in B(H) is a �nite linear combination of positive operators [31, Theorem 11.2].
Finally, for all T1, . . . , Tn ∈ B(H) and a1, . . . , an ∈ A we note that

n∑
i,j=1

θ̃ϕ(T ∗i Tj)(a
∗
i aj) =

n∑
i,j=1

Ψ((ai ⊗ Ti)∗(aj ⊗ Tj)) = Ψ

((
n∑
i=1

ai ⊗ Ti

)∗( n∑
i=1

ai ⊗ Ti

))
≥ 0,

so Proposition 3.22 tells us that θ̃ϕ is completely positive. De�ning E : B(Hϕ)→ πϕ(A)′ by

E = θ−1
ϕ ◦ θ̃ϕ,

E is then completely positive and for T ∈ πϕ(A)′, E(T ) = T . Therefore πϕ(A)′ is injective and hence
semidiscrete, so Theorem 5.12 tells us that πϕ(A)′′ is injective.
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Since ϕ ∈ S(A) was arbitrary and πϕ is nondegenerate in every case, then for all ϕ ∈ S(A) there exists
a surjective normal ∗-homomorphism ρϕ : A∗∗ → πϕ(A)′′ such that πϕ = ρϕ ◦ ι, where ι denotes the
inclusion A → A∗∗; this follows from the discussion after the proof of Theorem 2.63. If we can prove
that the family (ρϕ)ϕ∈S(A) is separating, then Corollary 4.10 will yield that A∗∗ is injective.

Therefore assume that ρϕ(T ) = 0 for all ϕ ∈ S(A). Let (xα)α∈A be a net in A such that ι(xα) → T
ultraweakly. Then

πϕ(xα) = ρϕ(ι(xα))→ ρϕ(T ) = 0

ultraweakly for all ϕ ∈ S(A), and therefore

ϕ(xα) = 〈πϕ(xα)ξϕ, ξϕ〉 → 0.

By Theorem 2.34, we then see that ψ(xα) → 0 for all ψ ∈ A∗. Note that because Ω: (A∗∗)∗ → A∗
given by

Ω(ω)(a) = ω(ι(a))

is an isometric isomorphism (see page 62), then for all ω ∈ (A∗∗)∗, we have ω(ι(xα)) → 0 for all
ω ∈ (A∗∗)∗. Therefore ι(xα)→ 0 ultraweakly, and hence T = 0, completing the proof.

This concludes the main part of the project.



APPENDIX A

TOPOLOGICAL AND ALGEBRAIC PROPERTIES OF
BANACH SPACE OPERATORS

All sorts of small and useful results are needed in the main parts of the project, and this chapter is
devoted to proving them. The range of results here is quite wide, and no connection between the
sections is intended. Hopefully most readers won't �nd the proofs too trivial.

1.1 Operator extensions

Throughout the project, we need the important fact that any bounded operator on normed spaces
extends naturally to their completions. A proof is given here, along with an important corollary.

Proposition A.1. Let V and W be normed spaces and let T : V → W be a bounded linear operator.
If X and Y are Banach spaces and ϕV : V → X and ϕW : W → Y are linear isometric maps with dense
range, then there is a unique bounded linear operator T̃ ∈ B(X,Y) such that T̃ ◦ϕV = ϕW ◦T , i.e. the
following diagram commutes:

V
T //

ϕV

��

W

ϕW

��
X

T̃

// Y

The extension satis�es ‖T̃‖ = ‖T‖ and the following statements hold:

(i) If there exists c > 0 such that ‖Ty‖ = c‖y‖ for all x ∈ V , then ‖T̃ x‖ = c‖x‖ for all x ∈ X.
(ii) If T is surjective and bounded below, then T̃ is surjective as well.
(iii) If T is a surjective isometry, then T̃ is also a surjective isometry.
(iv) If T is not linear but conjugate linear, then T̃ is conjugate linear.
(v) If V and W are inner product spaces, X and Y are Hilbert spaces and T is isometric, then T̃

preserves inner products.
(vi) If V and W are normed algebras (resp. normed ∗-algebras), X and Y are Banach algebras (resp.

Banach ∗-algebras) and ϕV , ϕW and T are homomorphisms (resp. ∗-homomorphisms), then T̃
is a homomorphism (resp. ∗-homomorphism) as well.

Proof. Uniqueness of the extension is clear: if T̃1 and T̃2 are bounded linear operators X→ Y satisfying
T̃1 ◦ ϕV = T̃2 ◦ ϕV = ϕW ◦ T , then by picking a sequence (xn)n≥1 in V for any given x ∈ X such that
ϕV (xn)→ x, continuity of T̃1 and T̃2 yields

T̃1(x) = lim
n→∞

T̃1ϕV (xn) = lim
n→∞

T̃2ϕV (xn) = T̃2(x).

The big question here is how to de�ne T̃ in the �rst place. Since we want T̃ to be continuous and
ϕV (V ) is dense in X, we may try to de�ne

T̃ (x) = lim
n→∞

ϕW (Txn)

where (xn)n≥1 is a sequence of V such that ϕV (xn)→ x, but it is not at all clear that it is well-de�ned:
if there is a limit at all, is it then independent of the choice of sequence?

116
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To address this, let x ∈ X and let (xn)n≥1 and (yn)n≥1 be sequences in V such that ϕV (xn) → x
and ϕV (yn) → x. First and foremost, (ϕV (xn)) is a Cauchy sequence in X, so (xn)n≥1 is a Cauchy
sequence in V since ϕV is an isometry. Therefore, as

‖ϕW (Txn)− ϕW (Txm)‖ = ‖Txn − Txm‖ ≤ ‖T‖‖xn − xm‖

for n,m ≥ 1, (ϕW (Txn))n≥1 is a Cauchy sequence in Y, and hence converges to some x̃ ∈ Y by
completeness. Same goes for (ϕW (Tyn))n≥1 that then converges to some ỹ ∈ Y. Since

‖ϕW (Txn)− ϕW (Tyn)‖ ≤ ‖T‖‖xn − yn‖ = ‖T‖‖ϕV (xn)− ϕV (yn)‖

for n ≥ 1, it follows from boundedness of T that

‖x̃− ỹ‖ ≤ ‖x̃− ϕW (Txn)‖+ ‖T‖‖ϕV (xn)− ϕV (yn)‖+ ‖ỹ − ϕW (Tyn)‖ → 0

for n → ∞. Hence x̃ = ỹ. Hence we can de�ne T̃ this way by T̃ x = x̃. Note for y ∈ V that
T̃ϕV (y) = ϕW (Ty), so T̃ also satis�es the needed equation. Moreover, T̃ is linear. Indeed, for
x, y ∈ X and sequences (xn)n≥1 and (yn)n≥1 in V such that ϕV (xn) → x and ϕV (yn) → y, then
ϕV (xn + yn)→ x+ y. Hence

ϕW (T (xn + yn)) = ϕW (T (xn)) + ϕW (T (yn))→ T̃ x+ T̃ y,

so T̃ (x + y) = T̃ x + T̃ y. Similarly one proves that T̃ (λx) = λT̃x for x ∈ X and λ ∈ C if T is linear,
and if T is conjugate linear, then conjugate linearity of T̃ follows in the same way, proving (iv) once
the general statement is proved.

Now note that
‖ϕW (Ty)‖ = ‖Ty‖ ≤ ‖T‖‖y‖ = ‖T‖‖ϕW (y)‖

for all y ∈ V . Let x ∈ X and take some sequence (xn)n≥1 in V such that ϕV (xn)→ x. Since we then
have ‖ϕW (Txn)‖ ≤ ‖T‖‖ϕV (xn)‖ for all n ≥ 1, we obtain ‖T̃ x‖ ≤ ‖T‖‖x‖. Moreover, for any x ∈ V ,
we have

‖Tx‖ = ‖ϕW (Tx)‖ = ‖T̃ϕV (x)‖ ≤ ‖T̃‖‖x‖,
so we �nally have ‖T̃‖ = ‖T‖. This concludes the proof of the general statement.

If ‖Ty‖ = c‖y‖ for some c > 0 and all y ∈ V , then for any x ∈ X, if ϕV (xn) → x for some sequence
(xn)n≥1 in V , then

‖T̃ x‖ = lim
n→∞

‖ϕW (Txn)‖ = c lim
n→∞

‖xn‖ = c lim
n→∞

‖ϕV (xn)‖ = c‖x‖,

proving (i). If T is surjective and bounded below, i.e. ‖Tx‖ ≥ c‖x‖ for some c > 0, and y ∈ Y, then
ϕW (yn) → y for some sequence (yn)n≥1 in W . Take xn ∈ V for all n ≥ 1 such that Txn = yn. Then
ϕW (Txn)→ y. As

‖ϕV (xn)− ϕV (xm)‖ = ‖xn − xm‖ ≤ c−1‖yn − ym‖ = c−1‖ϕW (yn)− ϕW (yn)‖

for all m,n ≥ 1, we see that (ϕV (xn))n≥1 is a Cauchy sequence, hence converging to some x ∈ X that
must satisfy T̃ x = y. Hence T̃ is surjective, proving (iii). (v) is a consequence of the polarization
identity.

Finally, assume that the conditions of (vi) are satis�ed and let x, y ∈ X. Then ϕV (xn) → x and
ϕV (yn)→ x for sequences (xn)n≥1 and (yn)n≥1 in V , so ϕV (xnyn)→ xy since the convergent sequences
are necessarily bounded. Then

T̃ (xy) = lim
n→∞

ϕW (T (xnyn)) = lim
n→∞

[ϕW (Txn)ϕW (Tyn)] = T̃ xT̃ y.

If the spaces in question are ∗-algebras and the maps are ∗-homomorphisms, note that

‖ϕV (x∗n)− ϕ(x∗)‖ ≤ ‖x∗n − x∗‖ = ‖xn − x‖ → 0,

since the involution is isometric, so that

T̃ x∗ = lim
n→∞

ϕW (T (x∗n)) = lim
n→∞

ϕW (T (xn))∗ = (T̃ x)∗,

proving (vi).
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Corollary A.2. Let X be a Banach space with a dense subspace V . Let ϕ : V ×V → C be a sesquilinear
form for which there exists C ≥ 0 such that

|ϕ(x, y)| ≤ k‖x‖‖y‖, x, y ∈ V.

(We say that ϕ is bounded by k.) Then ϕ extends uniquely to a sesquilinear form ϕ̃ : X×X→ C such
that |ϕ̃(x, y)| ≤ k‖x‖‖y‖ for all x, y ∈ X. Moreover:

(i) If ϕ is Hermitian, i.e. ϕ(x, y) = ϕ(y, x) for all x, y ∈ V , then ϕ̃ is Hermitian.
(ii) If ϕ is positive, i.e. ϕ(x, x) ≥ 0 for all x ∈ V , then ϕ̃ is positive.

Proof. Fix y ∈ V and note that the map V → C given by x 7→ ϕ(x, y) is a linear functional on
V , bounded by k‖y‖. Proposition A.1 tells us that there exists a unique bounded linear functional
ϕy : X → C such that ϕy(x) = ϕ(x, y) for all x ∈ V , also satisfying ‖ϕy‖ ≤ k‖y‖. Hence we obtain a
map Ω: V → X∗ given by Ω(y) = ϕy. For any given y1, y2 ∈ V and λ1, λ2 ∈ C we have

Ω(λ1y1 + λ2y2)(x) = ϕ(x, λ1y1 + λ2y2) = λ1ϕ(x, y1) + λ2ϕ(x, y2) = λ1ϕy1
(x) + λ2ϕy2

(x)

for all x ∈ V , so uniqueness of ϕy yields that Ω is in fact conjugate linear. Moreover,

|Ω(y)(x)| = |ϕ(x, y)| ≤ k‖x‖‖y‖, x ∈ X, y ∈ V,

so ‖Ω‖ ≤ k. Proposition A.1 now says that Ω extends to a unique conjugate linear operator Ω̃ : X→ X∗

that uniquely satis�es Ω̃(y) = ϕy for all y ∈ V and also satis�es ‖Ω̃‖ ≤ k. De�ne ϕ̃ : X × X → C by
ϕ̃(x, y) = Ω̃(y)(x). Then ϕ̃ is sesquilinear and

|ϕ̃(x, y)| = |Ω̃(y)(x)| ≤ ‖Ω̃(y)‖‖x‖ ≤ k‖x‖‖y‖

for all x, y ∈ X. Finally, ϕ̃(x, y) = Ω̃(y)(x) = ϕy(x) = ϕ(x, y) for all x, y ∈ V , so ϕ̃ extends ϕ.

For uniqueness, let ψ : X × X → C be another sesquilinear form that extends ϕ and is bounded by k.
For any y ∈ X, note that ψy : X → C given by ψy(x) = ψ(x, y) is a bounded linear functional on X.
Note now that ψy(x) = ψ(x, y) = ϕ(x, y) = ϕy(x) for all x, y ∈ V . De�ning Ψ: X→ X∗ by Ψ(y) = ψy,
Ψ is continuous as it satis�es ‖Ψ(y)‖ ≤ k‖y‖ for all y ∈ X; moreover Ψ(y) = ϕy = Ω̃(y) for all y ∈ V .
Hence Ψ = Ω̃ by continuity, and therefore

ϕ̃(x, y) = Ω̃(y)(x) = Ψ(y)(x) = ψ(x, y)

for all x, y ∈ X, so ϕ̃ is uniquely determined by the boundedness and sesquilinearity of ϕ.

Note that if x, y ∈ X and xn → x and yn → y for sequences (xn)n≥1 and (yn)n≥1 in X, then

|ϕ(xn, yn)− ϕ(x, y)| ≤ k(‖xn − x‖‖yn‖+ ‖x‖‖yn − y‖)→ 0

as (‖yn‖)n≥1 is bounded, so ϕ(xn, yn)→ ϕ(x, y). For x, y ∈ X choose sequences (xn)n≥1 and (yn)n≥1

in V such that xn → x and yn → x. If ϕ is Hermitian, then

ϕ̃(x, y) = lim
n→∞

ϕ(xn, yn) = lim
n→∞

ϕ(yn, xn) = ϕ̃(y, x),

and thus ϕ̃ is Hermitian as well. If ϕ is positive, ϕ̃(x, x) = limn→∞ ϕ(xn, xn) ≥ 0, so ϕ̃ is also positive,
completing the proof.

1.2 A property of the weak∗ topology on state spaces

Recall that for any Banach space X that the weak∗ topology on X∗ is the locally convex Hausdor�
topology given by the separating family of seminorms given by ϕ 7→ |ϕ(x)| for x ∈ X. Hence in X∗ a
net (ϕα)α∈A converges to ϕ in the weak∗ topology if and only if ϕα(x)→ ϕ(x) for all x ∈ X.

We use the opportunity to give a characterisation of weak∗ continuous linear functionals.

Lemma A.3. Let X be a Banach space and let ψ : X∗ → C be a linear functional. Then ψ is weak∗

continuous if and only if there exists an x ∈ X such that ψ(ϕ) = ϕ(x) for all ϕ ∈ X∗.
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Proof. Assume that ψ is weak∗ continuous. Then there exist x1, . . . , xn ∈ X and ε > 0 such that

{ϕ ∈ X∗ | |ϕ(xi)| < ε, 1 ≤ i ≤ n} ⊆ {ϕ ∈ X∗ | |ψ(ϕ)| < 1}.

By de�ning a linear functional x̂ : X∗ → C by x̂(ϕ) = ϕ(x), then if x̂i(ϕ) = 0 for all 1 ≤ i ≤ n we see
that x̂i(λϕ) = 0 for all λ ∈ C and 1 ≤ i ≤ n. This implies |λ||ψ(ϕ)| < 1, so ψ(ϕ) = 0. Hence

n⋃
i=1

ker x̂i ⊆ kerψ.

De�ning a map π : X∗ → Cn by π(ϕ) = (ϕ(x1), . . . , ϕ(xn)), then kerπ =
⋃n
i=1 ker x̂i ⊆ kerψ, so π

induces a linear map γ : π(X∗)→ C given by γ(π(ϕ)) = ψ(ϕ). Since π(X∗) is a complete subspace of the
Hilbert space Cn, the Riesz representation theorem [14, Theorem 2.3.1] provides a λ = (λ1, . . . , λn) ∈
π(X∗) ⊆ Cn such that γ(π(ϕ)) = 〈π(ϕ), λ〉. Hence

ψ(ϕ) =

n∑
i=1

λiϕ(xi) = ϕ

(
n∑
i=1

λixi

)
.

The other implication is trivial.

The above lemma is all the more e�ective when combined with the Hahn-Banach separation theorem
for the weak∗ topology as the next lemma amply demonstrates.

Lemma A.4. Let A be a unital C∗-algebra and let X ⊆ S(A). Suppose that it holds for all a ∈ Asa

that ϕ(a) ≥ 0 for all ϕ ∈ X implies a ∈ A+. Then the weak∗ closure S of the convex hull of X is equal
to S(A), i.e. the convex hull of X is weak∗-dense in A.

Proof. Since S(A) is weak∗-compact and convex by [31, Proposition 13.8], it is clear that S ⊆ S(A) no
matter what. Suppose that there exists ϕ ∈ S(A) such that ϕ /∈ S . By the Hahn-Banach separation
theorem for locally convex topological vector spaces [14, Corollary 1.2.12] and Lemma A.3, there is a
weak∗-continuous linear functional on A∗, thus an a ∈ A, and a real number λ such that

Reψ(a) ≤ λ < Reϕ(a), ψ ∈ S .

Letting b = 1
2 (a+ a∗), we have ψ(b) = 1

2 (ψ(a) + ψ(a)) = Reψ(a) for all ψ ∈ S(A) so that

ψ(b) ≤ λ < ϕ(b), ψ ∈ S .

As λ1B− b ∈ Asa and ψ(λ1B− b) = λ−ψ(b) ≥ 0 for all ψ ∈ X, we have λ1B− b ∈ A+. As ϕ is a state,
it follows that ϕ(b) ≤ λ, a contradiction. Hence S = S(A).

1.3 The point-norm and point-weak topology

Another pair of locally convex topologies become useful in Chapter 5. Here they are.

De�nition A.1. Let X be a Banach space. The point-norm topology on B(X) is the locally convex
Hausdor� topology generated by the separating family of seminorms

T 7→ ‖Tx‖, x ∈ X,

and the point-weak topology on B(X) is the locally convex Hausdor� topology likewise generated by
the separating family of seminorms given by

T 7→ |ϕ(Tx)|, x ∈ X, ϕ ∈ X∗.

Note that if X is a Hilbert space, then the point-norm topology and point-weak topology are respectively
just the strong operator topology and the weak operator topology on B(X) by the Riesz representation
theorem [13, Theorem 5.25]. Similarly, for an arbitrary Banach space X, if (Tα)α∈A is a net in B(X),
T ∈ B(X) and Tα → T in the point-norm topology, then Tα → T in the point-weak topology.

Proposition A.5. Let X be a Banach space. If ω : B(X)→ C is a linear functional, then the following
are equivalent:
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(i) ω is continuous with respect to the point-norm topology.
(ii) ω is continuous with respect to the point-weak topology.
(iii) There exist x1, . . . , xn ∈ X and ϕ1, . . . , ϕn ∈ X∗ such that

ω(T ) =

n∑
i=1

ϕi(Txi), T ∈ B(X).

Proof. The implications (iii)⇒ (ii)⇒ (i) are obvious. Assume that ω is continuous with respect to the
point-norm topology, and take C > 0 and x1, . . . , xn ∈ X such that

|ω(T )| ≤ C
n∑
i=1

‖Txi‖, T ∈ B(X) (A.1)

by [13, Proposition 5.15]. Equip the vector space Xn = X⊕ . . .⊕ X with the norm ‖ · ‖taxi, i.e.

‖(y1, . . . , yn)‖taxi =

n∑
i=1

‖yi‖, y1, . . . , yn ∈ X

(the reason for the name is because the norm is often called the taxicab norm) and let

Y = {(Tx1, . . . , Txn) |T ∈ B(X)}.

Y is then a subspace of Xn. De�ne Φ0 : Y→ C by

Φ0((Tx1, . . . , Txn)) = ω(T ), T ∈ B(X).

Φ0 is then well-de�ned by (A.1), linear and ‖Φ0‖ ≤ C. By the Hahn-Banach theorem [13, Theorem
5.7], there exists a linear functional Φ: Xn → C such that Φ|Y = Φ0 and ‖Φ‖ = ‖Φ0‖ ≤ C. De�ne a
linear functional ϕi ∈ X∗ for all i = 1, . . . , n by

ϕi(x) = Φ(ιi(x)),

where ιi : X→ Xn is the inclusion into the i'th copy of X in Xn. Then

ω(T ) = Φ((Tx1, . . . , Txn)) =

n∑
i=1

ϕi(Txi), T ∈ B(X),

establishing (i)⇒ (iii).

Proposition A.6. Let X be a locally convex topological vector space and let Y ⊆ X be a convex subset.
Then the following are equivalent:

(i) y ∈ Y.
(ii) There exists a net (yα)α∈A in Y such that ϕ(yα) → ϕ(y) for all continuous linear functionals ϕ

on X.

Proof. (i)⇒ (ii) is obvious. Assume for the converse that (i) does not hold. SinceY is convex, then from
the Hahn-Banach separation theorem for locally convex topological vector spaces (cf. [14, Corollary
1.2.12]), it follows that there exists a continuous linear functional ϕ : X→ C and λ ∈ R such that

Reϕ(x) > λ ≥ Reϕ(y), y ∈ Y.

In particular, Reϕ(yα) ≤ λ for any net (yα)α∈A in Y, so Reϕ(yα) cannot converge to Reϕ(y) as that
would imply Reϕ(y) ≤ λ. Hence ϕ(yα) 6→ ϕ(y) for any net (yα)α∈A in Y, so (ii) does not hold
either.

The next result is really the essential one. Everybody uses it all the time, even in their sleep.

Theorem A.7. Let X be a vector space equipped with two locally convex topologies τ1 and τ2. Assume
that the set of linear functionals on X that are continuous with respect to τ1 coincides with the set of
linear functionals continuous with respect to τ2. Then for any convex subset Y ⊆ X, the closures of Y
with respect to τ1 and τ2 are equal.
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Proof. For any i = 1, 2, Proposition A.6 tells us that y ∈ Y
τi if only if there exists a net (yα)α∈A such

that ϕ(yα) → ϕ(y) for all τi-continuous linear functionals ϕ on X. As the sets of τ1-continuous and
τ2-continuous linear functionals on X coincide, the result follows.

The connection to the topologies de�ned in this section follows immediately from Proposition A.5:

Corollary A.8. For any Banach space X and any convex subset S ⊆ B(X), the point-norm and
point-weak closures of S coincide.

1.4 Everything you always wanted to know about �nite rank operators

This section contains a lot of small results about �nite rank operators, including a C∗-algebraic proof
of the fact that any �nite rank operator on a Hilbert space has �nite spectrum. Lemmas abound!

In the general Banach space case, two results are all we will need.

Lemma A.9. Let A and B be Banach spaces and let ψ : A → B be a bounded linear map of �nite
rank. Then there exist b1, . . . , bn ∈ B and ϕ1, . . . , ϕn ∈ A∗ such that

ψ(a) =

n∑
i=1

ϕi(a)bi, a ∈ A.

Proof. Let {b1, . . . , bn} be a vector basis for ψ(A). It is then clear that ψ is of the above form, so
we only need to prove that the ϕi are linear and bounded. Linearity is easy, since for a, b ∈ A and
λ1, λ2 ∈ C, then

n∑
i=1

(λ1ϕi(a) + λ2ϕi(b))bi = λ1ψ(a) + λ2ψ(b) = ψ(λ1a+ λ2b) =

n∑
i=1

ϕi(λ1a+ λ2b)bi,

yielding
ϕi(λ1a+ λ2b) = λ1ϕi(a) + λ2ϕi(b)

for all i = 1, . . . , n by linear independence of the bi. De�ne ω1 : A → Cn by ω1(a) = (ϕ1(a), . . . , ϕn(a))
and ω2 : Cn → ϕ(A) by ω2(λ1, . . . , λn) =

∑n
i=1 λibi. Then ψ = ω2 ◦ ω1. As ω2 is clearly a bounded

isomorphism with respect to the ‖ ·‖1-norm, it follows from the Open Mapping Theorem [13, Corollary
5.11] that ω−1

2 is bounded. Hence for all i = 1, . . . , n and a ∈ A, it follows that

|ϕi(a)| ≤ ‖ω1(a)‖1 = ‖ω−1
2 (ψ(a))‖1 ≤ ‖ω−1

2 ‖‖ψ‖‖a‖,

so all the ϕi are bounded; hence ϕi ∈ A∗ for all i = 1, . . . , n.

Note that this implies, along with the Riesz representation theorem [14, Theorem 2.3.1], that any �nite
rank operator on Hilbert space is a �nite sum of elementary operators, as found in Section 2.2.

Lemma A.10. Let A and B be Banach spaces and let ψ : A → B be a bounded linear map of �nite
rank. Then ψ∗ : B∗ → A∗ is of �nite rank as well.

Proof. Using Lemma A.9, there exist a1, . . . , an ∈ A, ϕ1, . . . , ϕn ∈ A∗ such that

ψ(a) =

n∑
j=1

ϕj(a)aj , a ∈ A.

Hence for ω ∈ A∗ and a ∈ A, we have

ψ∗(ω)(a) = ω(ψ(a)) =

n∑
j=1

ω(aj)ϕj(a).

Therefore ψ∗(ω) =
∑n
j=1 ω(aj)ϕj , so ψ∗ has �nite rank.

Recall that if A is a unital C∗-algebra and p ∈ A is a non-zero projection, then pAp is a C∗-algebra
with unit p.
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Lemma A.11. Let A be a unital C∗-algebra and let p ∈ A be a projection di�erent from 0 and 1A.
Then x ∈ pAp and y ∈ (1A − p)A(1A − p) are invertible if and only if x+ y is invertible in A.

Proof. If x + y is invertible in A with inverse z ∈ A, then note that (x + y)p = xp = px = p(x + y),
so that (pzp)x = pz(x + y)p = p and x(pzp) = p(x + y)zp = p, so that x is invertible with inverse
pzp ∈ pAp. In a similar manner, one proves that y is invertible with inverse (1A − p)z(1A − p). For
the converse statement, let a ∈ pAp be the inverse of x and b ∈ (1A − p)A(1A − p) be the inverse of y.
Then it is easy to see that a+ b ∈ A is the inverse of x+ y.

Lemma A.12. Let A be a unital C∗-algebra, let p ∈ A be a projection di�erent from 0 and 1A and
let x ∈ pAp, so that x = pxp. Then

σA(x) = σpAp(x) ∪ {0}.

Proof. For any λ ∈ C we have

λ /∈ σpAp(x) and λ 6= 0⇔ x− λp is invertible in pAp and λ 6= 0

⇔ x− λp− λ(1A − p) is invertible in A
⇔ x− λ1A is invertible in A
⇔ λ /∈ σA(x).

At the second biconditional, we used Lemma A.11 along with the fact that −λ(1A − p) is invertible in
(1A − p)A(1A − p) for all λ 6= 0.

Lemma A.13. For a Hilbert space H and any non-zero projection P ∈ B(H), the restriction map
PB(H)P → B(P (H)) is a unital ∗-isomorphism.

Proof. The reader will hopefully forgive the ramshackle proof. De�ne ϕ : PB(H)P → B(P (H)) by
ϕ(T ) = T |X where X = P (H). ϕ is clearly additive and unital. Moreover, for S, T ∈ PB(H)P , we
have PSP = S and PTP = T and therefore

ϕ(ST ) = ST |X = (PSP )(PTP )|X = (PSP )|X(PTP )|X = S|XT |X = ϕ(S)ϕ(T ),

so ϕ is multiplicative. For any ξ, η ∈ P (H) and S ∈ PB(H)P , note that

〈ξ, ϕ(S∗)η = 〈ξ, S∗η〉 = 〈Sξ, η〉 = 〈ϕ(S)ξ, η〉,

so ϕ(S∗) = ϕ(S)∗. Therefore ϕ is a unital ∗-homomorphism. ϕ is surjective; indeed if T ∈ B(P (H)),
then the operator PTP ∈ PB(H)P has image T under ϕ. Finally, if S|X = T |X for S, T ∈ PB(H)P ,
then Sξ = SPξ = TPξ = Tξ for all ξ ∈ H, so ϕ is injective.

Lemma A.14. For any n ≥ 1 and A ∈Mn(C), σ(a) is the set of eigenvalues of A.

Proof. Let I ∈ Mn(C) denote the identity matrix. For λ ∈ C, λI − A is not invertible if and only if
it is not injective. Hence λI − A is not invertible if and only if there exists a non-zero vector x ∈ Cn
such that (λI −A)x = 0 or Ax = λx, i.e. if λ is an eigenvalue of A.

Recall that if a Hilbert space H is �nite-dimensional, then it is isometrically isomorphic to Cn for
some n ≥ 1. Thus B(H) ∼= Mn(C). As any complex n × n matrix has �nitely many eigenvalues, it
then follows that any T ∈ B(H) has �nite spectrum since unital ∗-isomorphisms preserve spectra [31,
Corollary 9.3].

Lemma A.15. A �nite rank operator T on a Hilbert space H has �nite spectrum.

Proof. We can assume that T 6= 0. Let ξ1, . . . , ξn be an orthonormal basis for T (H), and let H0

be the linear span of the vectors ξ1, . . . , ξn and T ∗ξ1, . . . , T
∗ξn. Then H0 is a Hilbert space and

N = dimH0 < ∞. Note that for all ξ ∈ H, Tξ ∈ H0. Moreover, since there exist λ1, . . . , λn ∈ C
such that Tξ =

∑n
i=1 λiξi, then T

∗Tξ ∈ H0. If P is the orthogonal projection onto H0, it is clear that
PT = T . If ξ ∈ H⊥0 , then

0 = 〈T ∗Tξ, ξ〉 = 〈Tξ, Tξ〉 = ‖Tξ‖2.

Thus T (1H − P ) = 0, so TP = T and hence PTP = T . As PB(H)P ∼= B(H0) ∼= MN (C) by Lemma
A.13, we see that σPB(H)P (T ) is �nite. Hence Lemma A.12 tells us that T has �nite spectrum.
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1.5 Separable C∗-algebras

Recall that a metric space is separable if it has a countable dense subset. The last result of this section
is needed in Chapter 3 to prove a criterion equal to positivity of a matrix with C∗-algebra entries.

Lemma A.16. Any non-empty subset S of a separable metric space X with metric d is separable.

Proof. Let {xn}n≥1 be a countable dense subset of X. Let {qm}m≥1 be an enumeration of the positive
rational numbers, and let Sn,m = {x ∈ S | d(x, xn) < qm}. For any n,m ≥ 1, let xn,m be a point of
Sn,m if Sn,m is non-empty. The collection of all xn,m is clearly non-empty � otherwise X would not
be separable � and moreover countable. Now let x ∈ S and let ε > 0. Then there exists n ≥ 1 such
that d(x, xn) < ε

4 and m ≥ 1 such that ε
4 < qm < ε

2 . As x ∈ Sn,m, then Sn,m is non-empty and hence
d(x, xn,m) < d(x, xn) + d(xn, xn,m) < ε

4 + ε
2 < ε. Hence the collection of all xn,m is a countable dense

subset of S .

The above metric space result then has the following application.

Proposition A.17. Let A be a separable C∗-algebra. Then A has a faithful state.

Proof. Since A is separable, then the preceding lemma tells us that B = {a ∈ A+ | ‖a‖ = 1} has a
countable dense subset {an |n ≥ 1}. For each n ≥ 1, choose ϕn ∈ S(A) such that ϕn(an) = ‖an‖ = 1
by Theorem 0.2. De�ne ϕ : A → C by

ϕ(a) =

∞∑
n=1

2−nϕn(a).

ϕ is clearly well-de�ned, linear and satis�es ‖ϕ‖ ≤
∑∞
n=1 2−n = 1. Moreover, as

ϕ(1A) =

∞∑
n=1

2−n = 1,

we see ϕ is a state. Moreover, ϕ is faithful. Indeed, let a ∈ A be non-zero and positive and let
a′ = ‖a‖−1a. Then a′ ∈ B, so there exists n ≥ 1 such that ‖a′ − an‖ < 1. Then

|1− ϕn(a′)| = |ϕn(an − a′)| ≤ ‖an − a′‖ < 1,

so ϕn(a′) > 0 and hence ϕ(a′) =
∑∞
m=1 2−mϕm(a′) ≥ ϕn(a′) > 0. Therefore ϕ(a) > 0, completing the

proof.

1.6 E�ects of second adjoint maps on exact sequences

This section is devoted to one small lemma concerning what happens to inclusion and quotient maps
on Banach spaces.

Lemma A.18. Let X be a Banach space and Y ⊆ X a closed subspace, with the inclusion map
j : Y ↪→ X and quotient map π : X→ X/Y. Then

(i) j∗∗ : Y∗∗ → X∗∗ is injective.
(ii) kerπ∗∗ is equal to the weak∗ closures of j∗∗(ιY(Y)) and j∗∗(Y∗∗) where ιY : Y → Y∗∗ is the

canonical inclusion.
(iii) (X/Y)∗∗ is equal to the weak∗-closures of π∗∗(ιX(X)) and π∗∗(X∗∗) where ιX : X → X∗∗ is the

canonical inclusion.

Proof. Let ιX, ιY and ιX/Y denote the inclusions into the biduals of X, Y and X/Y respectively, and
recall that ιX◦j = j∗∗◦ιY and ιX/Y◦π = π∗∗◦ιX. As we will be using results about weak∗ convergence
to no avail in this proof, we will abbreviate �in the weak∗ topology� as �w∗�.

Assume that j∗∗(ϕ) = 0 for some ϕ ∈ Y∗∗. By Goldstine's theorem [29, Theorem II.A.13], there exists
some net (yα)α∈A in Y such that ιY(yα) → ϕ w∗. By w∗-continuity of the second adjoint maps, we
then have ιX(yα)→ 0 w∗, or ψ(yα)→ 0 for all ψ ∈ X∗. The Hahn-Banach theorem [13, Theorem 5.7]
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now implies ψ′(yα)→ 0 for all ψ′ ∈ Y∗, so ιY(yα)→ 0 w∗ and thus ϕ = 0. Hence j∗∗ is injective, and
moreover j∗∗(Y∗∗) ⊆ kerπ∗∗, as π∗∗ ◦ j∗∗ = (π ◦ j)∗∗ = 0.

Assume now that ϕ ∈ kerπ∗∗. Then ϕ◦π∗ = 0 for all ψ ∈ (X/Y)∗ or ϕ(ψ) = 0 for all ψ ∈ π∗((X/Y)∗).
By [22, Theorem 4.9(b)],

π∗((X/Y)∗) = Y⊥ := {ψ ∈ X∗ |ψ(y) = 0 for all y ∈ Y} = {ψ ∈ X∗ |ψ ◦ j = 0},

so ϕ(ψ) = 0 for all ψ ∈ Y⊥. Assume now that ϕ /∈ Z where Z denotes the w∗-closure of j∗∗(ιY(Y)) ⊆
X∗∗. By the Hahn-Banach theorem for locally convex topological vector spaces [14, Corollary 1.2.13],
there is ω ∈ X∗ such that ψ(ω) = 0 for all ψ ∈ Z and ϕ(ω) 6= 0. Hence for all y ∈ Y, we have

0 = j∗∗(ιY(y))(ω) = ιY(y)(j∗(ω)) = ω(j(y)) = ω(y),

so ω ∈ Y⊥. Hence ϕ(ω) = 0, a contradiction, so ϕ ∈ Z. Hence kerπ∗∗ is equal to the w∗-closure of
j∗∗(ιY(Y)), from which the last part follows by continuity of j∗∗.

Finally, note that ιX/Y(X/Y) ⊆ π∗∗(ιX(X)), so that the w∗-closure of π∗∗(ιX(X)) is (X/Y)∗∗. The last
part follows similarly.

For the record, this result might not be very intriguing in itself, but watch what happens in Proposition
3.14 when we start working with second adjoints of ∗-homomorphisms. That result owes a lot to what
we have just proved, but also proves that ∗-homomorphisms are slightly more �magical� than linear
maps, for lack of a better term.



APPENDIX B

TRACE CLASS AND HILBERT-SCHMIDT
OPERATORS

We will in this chapter discuss an important class of bounded operators on a Hilbert space. For the
sake of completeness, we include some results concerning generalized sums. In the following, let H
denote a Hilbert space and for any non-empty set I, let FI denote the directed set of �nite subsets of
I.

Proposition B.1. Let (xi)i∈I be a family of non-negative real numbers indexed by a non-empty set I.
If
∑
i∈I xi converges in R, then ∑

i∈I
xi = sup

G∈FI

∑
i∈G

xi.

Conversely, if the above supremum exists in R, then the sum converges and is equal to the supremum.

Proof. The inequality ≤ is obvious. Let x =
∑
i∈I xi. For ε > 0, let F ∈ FI be a �nite subset such

that for all H ∈ FI with F ⊆ H, we have |x−
∑
i∈H xi| < ε. For any G ∈ FI , we have∑

i∈G
xi ≤

∑
i∈F∪G

xi < x+ ε

since F ⊆ F ∪G. Hence the supremum over all G ∈ FI exists and

sup
G∈FI

∑
i∈G

xi ≤ x+ ε,

and since ε was arbitrary, the inequality ≥ follows.

Now assume that the supremum exists and denote it by X. Let ε > 0 and take F ∈ FI such that∑
i∈F xi + ε > X. Then for all G ∈ FI with F ⊆ G, we have∣∣∣∣∣∑

i∈G
xi −X

∣∣∣∣∣ = X −
∑
i∈G

xi ≤ X −
∑
i∈F

xi ≤ ε,

so that
∑
i∈I xi converges to X.

Corollary B.2. Let (xi)i∈I and (yi)i∈I be families of non-negative real numbers indexed by a non-emp-
ty set I such that xi ≤ yi for all i ∈ I, and assume that

∑
i∈I yi converges. Then

∑
i∈I xi converges

too, and
∑
i∈I xi ≤

∑
i∈I yi.

Proof. Let y =
∑
i∈I yi. For ε > 0, let F ∈ FI such that |

∑
i∈G yi − y| < ε for all G ∈ FI such that

F ⊆ G. For any G ∈ FI , then ∑
i∈G

xi ≤
∑

i∈F∪G
xi ≤

∑
i∈F∪G

yi < y + ε

since F ⊆ F ∪G. Since G was arbitrary, the supremum over all G ∈ FI exists and

sup
G∈FI

∑
i∈G

xi ≤ y + ε.

Because ε was arbitrary, we can conclude that the supremum is less than or equal to y, and Theorem
B.1 now yields that

∑
i∈I xi converges and that

∑
i∈I xi ≤ y.

125
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2.1 Potius sero quam numquam

We now turn our attention to Hilbert spaces.

Lemma B.3. Let (ei)i∈I and (fj)j∈J be orthonormal bases of H. For any positive operator T ∈ B(H)
then convergence of

∑
i∈I〈Tei, ei〉 implies∑

j∈J
〈Tfj , fj〉 =

∑
i∈I
〈Tei, ei〉.

In particular, if
∑
i∈I〈Tei, ei〉 does not converge, then

∑
i∈I〈Tfi, fi〉 does not converge either.

Proof. First of all, T = S∗S for some S ∈ B(H). Note that
∑
j∈J |〈Sei, fj〉|2 = ‖Sei‖2 for any i ∈ I,

so ∑
i∈I

∑
j∈J
|〈Sei, fj〉|2 =

∑
i∈I
〈Tei, ei〉

converges. For any �nite subset F of J , Corollary B.2 yields that∑
i∈I

∑
j∈F
|〈S∗ei, fj〉|2 ≤

∑
i∈I

∑
j∈J
|〈S∗ei, fj〉|2 =

∑
i∈I
〈Tei, ei〉.

Since ∑
j∈F
〈Tfj , fj〉 =

∑
j∈F

∑
i∈I
|〈Sfj , ei〉|2 =

∑
i∈I

∑
j∈F
|〈S∗ei, fj〉|2,

then
∑
j∈J〈Tfi, fi〉 converges by Proposition B.1 with

∑
j∈J〈Tfj , fj〉 ≤

∑
i∈I〈Tei, ei〉. Equality then

follows. The second result also follows easily, since if
∑
j∈I〈Tfj , fj〉 converged, then

∑
i∈I〈Tei, ei〉

would converge as well.

This particular result allows for a name for the above value in [0,∞] (since T was assumed to be
positive), independent of the orthonormal basis chosen.

De�nition B.1. Let H be a Hilbert space with orthonormal basis (ei)i∈I . For any positive operator
T ∈ B(H) the trace of T is given by

trT =
∑
i∈I
〈Tei, ei〉 ∈ [0,∞].

If an operator T ∈ B(H) satis�es tr |T | = tr(T ∗T )1/2 <∞, T is called a trace class operator (we will
oftentimes say that T is trace class), and the set of trace class operators on H is denoted by T (H).

Proposition B.4 (Properties of the trace). For positive operators S, T ∈ B(H) and λ ≥ 0, we have

(i) tr(S + T ) = trS + trT .

(ii) tr(λS) = λ · trS.
(iii) tr(UTU∗) = trT for any unitary operator U ∈ B(H).

(iv) If S ≤ T , then trS ≤ trT .

Proof. (i), (ii) and (iv) are clear. Finally, if U ∈ B(H) is unitary, note that if (ei)i∈I is an orthonormal
basis of H, then (Uei)i∈I is an orthonormal basis as well (indeed, if 〈Uei, ξ〉 = 0 for all i ∈ I, then
U∗ξ = 0, so ξ = UU∗ξ = 0). Hence

tr(UTU∗) =
∑
i∈I
〈(UTU∗)Uei, Uei〉 =

∑
i∈I
〈Tei, ei〉 = trT,

completing the proof.

Lemma B.5. If T ∈ B(H) is positive and U ∈ B(H) is a partial isometry, then tr(U∗TU) ≤ trT .
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Proof. Let (ei)i∈I be an orthonormal basis for H such that ei either belongs to kerU or (kerU)⊥ for
i ∈ I and let J be the subset of I consisting of all i such that ei ∈ (kerU)⊥. Then the set (Uei)i∈J is
orthonormal and may be extended to a full orthonormal basis (fi)i∈I for H, yielding

tr(U∗TU) =
∑
i∈I
〈Uei, TUei〉 =

∑
i∈J
〈TUei, Uei〉 ≤

∑
i∈I
〈Tfi, fi〉 = trT,

completing the proof.

Proposition B.6. Let H be a Hilbert space. Then

(i) T (H) is a vector space,
(ii) for all T ∈ T (H) and S ∈ B(H), then ST ∈ T (H) and TS ∈ T (H),
(iii) if T ∈ T (H), then T ∗ ∈ T (H).

Hence T (H) is a two-sided ∗-ideal of B(H).

Proof. (i) Since |λT | = (|λ|2T ∗T )1/2 = |λ||T | for all T ∈ T (H) and λ ∈ C, we have tr |λT | = |λ|tr |T |
by Proposition B.4 and thus T (H) is closed under scalar multiplication. Assume that S and T are
in T (H). To show that S + T ∈ T (H), we will make use of the polar decomposition for bounded
operators. Let U , V and W be partial isometries in B(H) such that

S = U |S|, T = V |T |, S + T = W |S + T |.

Moreover, let (ei)i∈I be an orthonormal basis of H. For any �nite subset F of I, note that∑
i∈F
〈|S + T |ei, ei〉 =

∑
i∈F
〈W ∗(S + T )ei, ei〉 ≤

∑
i∈F
|〈W ∗U |S|ei, ei〉|+

∑
i∈F
|〈W ∗V |T |ei, ei〉|.

By the Cauchy-Schwarz inequality, we have∑
i∈F
|〈W ∗U |S|ei, ei〉| ≤

∑
i∈F

∥∥∥|S|1/2ei∥∥∥∥∥∥|S|1/2U∗Wei

∥∥∥
≤

[∑
i∈F

∥∥∥|S|1/2ei∥∥∥2
]1/2 [∑

i∈F

∥∥∥|S|1/2U∗Wei

∥∥∥2
]1/2

≤

[∑
i∈I
〈|S|ei, ei〉

]1/2 [∑
i∈I
〈W ∗U |S|U∗Wei, ei〉

]1/2

≤ tr |S|1/2 · tr(W ∗U |S|U∗W )1/2

≤ tr |S|1/2 · tr(U |S|U∗)1/2

≤ tr |S|,

using Lemma B.5 and the fact that W and U∗ are partial isometries. Similarly one proves that∑
i∈F |〈W ∗V |T |ei, ei〉| ≤ tr |T |, yielding∑

i∈F
〈|S + T |ei, ei〉 ≤ tr |S|+ tr |T | <∞

for all �nite subsets F of I. Hence tr |S + T | ≤ tr |S|+ tr |T | <∞, so S + T ∈ T (H), and we conclude
that T (H) is a vector space.

(ii) Since any S ∈ B(H) can be written as a �nite linear combination of unitary operators [31, Theorem
10.6] and T (H) is a vector space, we need only show the result for unitary operators. For U ∈ B(H)
unitary and T ∈ T (H), we have |UT | = (T ∗U∗UT )1/2 = |T |, yielding UT ∈ T (H); furthermore since

(U∗|T |U)2 = U∗T ∗TU = (TU)∗(TU),

we have |TU | = U∗|T |U by uniqueness of the square root, so Proposition B.4(iv) yields that TU ∈
T (H).
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(iii) Let U be a partial isometry in B(H) such that T = U |T | by polar decomposition. Then

TT ∗ = U |T |2U∗ = (U |T |U∗)2,

so |T ∗| = U |T |U∗ by uniqueness of the square root. Therefore tr |T ∗| = tr(U |T |U∗) ≤ tr |T | < ∞ by
Lemma B.5 since U∗ is a partial isometry. Hence T ∗ ∈ T (H).

Note that if tr |T | = 0 for T ∈ T (H) and (ei)i∈H is an orthonormal basis for H, then∑
i∈I

∥∥∥|T |1/2ei∥∥∥2

=
∑
i∈I
〈|T |ei, ei〉 = 0,

so |T |1/2 = 0. Hence T ∗T = 0 and thus T = 0. Since the proof of Proposition B.6 yielded that

tr |λT | = |λ|tr |T |, tr |S + T | ≤ tr |S|+ tr |T |

for all S, T ∈ T (H) and λ ∈ C, we obtain a norm on T (H).

De�nition B.2. The trace norm ‖ · ‖1 on T (H) is de�ned by

‖T‖1 = tr |T |, T ∈ T (H).

In fact, T (H) is a Banach space with the trace norm, and we will prove this later. Now it is time to
introduce a new class of operators, the de�nition of which will be expressed by the trace.

De�nition B.3. For T ∈ B(H) we say that T is a Hilbert-Schmidt operator if |T |2 = T ∗T ∈ T (H),
i.e. if

∑
i∈I ‖Tei‖2 < ∞ for some orthonormal basis (ei)i∈I . Note that the sum is (still) independent

of the choice of basis. We denote the set of all Hilbert-Schmidt operators on H by T2(H) and for
T ∈ T2(H) we de�ne the Hilbert-Schmidt norm ‖T‖2 of T

‖T‖2 = ‖|T |2‖1/21 ,

i.e. the norm satis�es ‖T‖22 = ‖|T |2‖1 =
∑
i∈I ‖Tei‖2 for any orthonormal basis (ei)i∈I .

Note that T (H) ⊆ T2(H) by Proposition B.6. It is not immediately clear that the Hilbert-Schmidt
norm is actually a norm, and we will establish this now, as well as a lot of other properties of T2(H).

Proposition B.7. Let H be a Hilbert space. Then

(i) (T2(H), ‖ · ‖2) is a normed space.
(ii) If T ∈ T2(H), then T ∗ ∈ T2(H) and ‖T ∗‖2 = ‖T‖2.
(iii) For T ∈ T2(H), we have ‖T‖ ≤ ‖T‖2.
(iv) For S ∈ B(H) and T ∈ T2(H), then ST ∈ T2(H) and TS ∈ T2(H) with ‖ST‖2 ≤ ‖S‖‖T‖2 and

‖TS‖2 ≤ ‖S|‖T‖2.
(v) For U ∈ B(H) unitary and T ∈ T2(H), we have ‖UT‖2 = ‖TU‖2 = ‖T‖2.

Hence T2(H) is a two-sided ∗-ideal of B(H).

Proof. Fix an orthonormal basis (ei)i∈I for H. For S, T ∈ T2(H) and λ ∈ C, note that for �nite subsets
F of I, the triangle inequality on the Hilbert space CF yields[∑

i∈F
‖(S + T )ei‖2

]1/2

≤

[∑
i∈F

(‖Sei‖+ ‖Tei‖)2

]1/2

≤

[∑
i∈F
‖Sei‖2

]1/2

+

[∑
i∈F
‖Tei‖2

]1/2

= ‖S‖2 + ‖T‖2 <∞.

Hence S + T ∈ T2(H) with ‖S + T‖2 ≤ ‖S‖2 + ‖T‖2. It is clear that λT ∈ T2(H) as well with
‖λT‖2 = |λ|‖T‖2. Finally, if ‖T‖2 = 0 for some T ∈ T2(H), then ‖Tei‖2 = 0 for all i ∈ I, implying
T = 0. Therefore (i) follows. Additionally∑

i∈I
‖T ∗ei‖2 =

∑
i∈I

∑
i∈I
|〈T ∗ei, ei〉|2 =

∑
i∈I
|〈Tei, ei〉|2 =

∑
i∈I
‖Tei‖2,
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so (ii) holds as well. For (iii), let ξ be a unit vector of H. By choosing an orthonormal basis (ei)i∈I
for H containing ξ, we have

‖Tξ‖2 ≤
∑
i∈I
‖Tei‖2 = ‖T‖22.

Since ξ was arbitrary, we obtain (iii).

Finally, for an arbitrary orthonormal basis (ei)i∈I for H and all i ∈ I, then ‖STei‖2 = ‖S‖2‖Tei‖2
for S ∈ B(H) and T ∈ T2(H), implying ST ∈ T2(H) and ‖ST‖2 ≤ ‖S‖‖T‖2. Hence we can also
infer S∗T ∗ ∈ T2(H) for any S ∈ B(H) and T ∈ T2(H), so (ii) implies that TS ∈ T2(H) as well, as
‖TS‖2 = ‖S∗T ∗‖2 ≤ ‖S∗‖‖T ∗‖2 = ‖S‖‖T‖2. For (v), note �rst that UT ∈ T2(H) by (iv) and that∑
i∈I ‖TUei‖2 =

∑
i∈I ‖Tei‖2 because (Uei)i∈I is also an orthonormal basis for H. Hence ‖TU‖2 =

‖T‖2. Therefore ‖UT‖2 = ‖T ∗U∗‖2 = ‖T ∗‖2 = ‖T‖2 as well.

As a consequence of Proposition B.7(ii), we have

‖T‖1 = tr |T | = ‖|T |1/2‖22 ≥ ‖|T |1/2‖2 = ‖|T |‖ = ‖T‖.

Already from the de�nition of Hilbert-Schmidt operators one might suspect that there is some deep
connection between these and trace class operators, other than the inclusion. The following proposition
sheds some light on this.

Proposition B.8. For T ∈ B(H), the following are equivalent:

(i) T ∈ T (H).
(ii) |T |1/2 ∈ T2(H).

(iii) T is the product of two Hilbert-Schmidt operators.
(iv) |T | is the product of two Hilbert-Schmidt operators.

Proof. For (i) ⇒ (ii), note that ‖|T |1/2ξ‖2 = 〈ξ, |T |ξ〉 for all ξ ∈ H. In the following, let T = U |T |
be the polar decomposition of T . If (ii) holds, then T = (U |T |1/2)(|T |1/2), and as U |T |1/2 ∈ T2(H)
by Proposition B.7, (iii) follows. If (iii) holds, then assume that T = RS for R,S ∈ T2(H). Then
(U∗R)S = U∗U |T | = |T | because U∗U is the projection onto the closure of the range of |T |, and
U∗R ∈ T2(H) by Proposition B.7. Finally, if (iv) holds, then suppose that |T | = RS for R,S ∈ T2(H).
For any orthonormal basis (ei)i∈I for H and F ∈ FI , we have

∑
i∈F
〈|T |ei, ei〉 ≤

∑
i∈F
‖Sei‖‖R∗ei‖ ≤

[∑
i∈I
‖Sei‖2

]1/2 [∑
i∈I
‖R∗ei‖2

]1/2

<∞

by Proposition B.7, yielding tr |T | <∞.

Our �rst big result (in the sense that it is immensely useful) concerning trace class operators is the
following theorem that provides some structure not only for the aforementioned operators, but also
the Hilbert-Schmidt operators.

Theorem B.9. For T ∈ T (H) and any orthonormal basis (ei)i∈I for H, then
∑
i∈I〈Tei, ei〉 converges

absolutely in C and the limit is independent of the choice of basis.

Proof. Since T ∈ T (H), we can write T = S∗R for Hilbert-Schmidt operators R and S. For λ ∈ C
and i ∈ I, note that since ‖(R− λS)ei‖2 ≥ 0, we obtain

‖Rei‖2 + |λ|2‖Sei‖2 ≥ 〈Rei, λSei〉+ 〈λSei, Rei〉 = 2Re〈Rei, λSei〉 = 2Reλ〈Rei, Sei〉.

Hence if |λ| = 1 and λ〈Rei, Sei〉 = |〈Rei, Sei〉|, we obtain

|〈Tei, ei〉| = |〈Rei, Sei〉| ≤
1

2
(‖Rei‖2 + ‖Sei‖2)

for all i ∈ I. Therefore
∑
i∈I |〈Tei, ei〉| ≤

∑
i∈I ‖Rei‖2 +

∑
i∈I ‖Sei‖2 <∞, so

∑
i∈I〈Tei, ei〉 converges

absolutely. To prove that the sum is independent of the choice of basis, observe that for any j ∈ I we
have

‖(R+ S)ej‖2 − ‖(R− S)ej‖2 = 2〈Rej , Sej〉+ 2〈Sej , Rej〉 = 4Re〈Rej , Sej〉 = 4Re〈Tej , ej〉
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and

‖(iR+ S)ej‖2 − ‖(iR− S)ej‖2 = 2〈iRej , Sej〉+ 2〈Sej , iRej〉 = 4Re〈iRej , Sej〉 = −4Im〈Tej , ej〉.

Recause R+ S and R− S are also Hilbert-Schmidt operators, we see that

Re
∑
j∈I
〈Tej , ej〉 =

∑
j∈I

Re〈Tej , ej〉

=
1

4

∑
j∈I
‖(R+ S)ej‖2 −

∑
j∈I
‖(R− S)ej‖2

 =
1

4

[
‖R+ S‖22 − ‖R− S‖22

]
,

and likewise
Im
∑
j∈I
〈Tej , ej〉 = −1

4

[
‖iR+ S‖22 − ‖iR− S‖22

]
.

Hence it follows that
∑
i∈I〈Tei, ei〉 is independent of the choice of basis.

This inspires the following de�nition.

De�nition B.4. Let H be a Hilbert space. The map tr : T (H)→ C given by

trT =
∑
i∈I
〈Tei, ei〉,

where (ei)i∈I is any orthonormal basis, is called the trace.

Now the face of the reader might look like a question mark: is this the same trace as de�ned for
positive operators? The answer would be yes and no. It is clear that we are dealing with two separate
classes of operators, but it is also not hard to see that the traces of a bounded operator are equal if
the operator is both positive and trace class. The reason that we �expand� our notion of the trace to
the trace class operators is that it o�ers the operator algebraist a nice architectural background for
considering T (H) as more than just a normed space. The �rst thing we shall look into is that it turns
out that the trace de�ned above indeed lives up to its name.

Proposition B.10. tr is a linear functional on T (H) satisfying

tr(T ∗) = trT , tr(TS) = tr(ST ), |tr(ST )| ≤ ‖S‖‖T‖1 T ∈ T (H), S ∈ B(H).

Proof. Linearity and the �rst equality are clear from straightforward calculation. Fix an orthonormal
basis (ei)i∈I for H. Since any S ∈ B(H) is a �nite linear combination of four unitary operators, it
su�ces to check that tr(TS) = tr(ST ) for T ∈ T (H) and a unitary operator S ∈ B(H). In this case,
de�ning fi = Sei for i ∈ I, (fi)i∈I is an orthonormal basis and S∗fi = ei for all i ∈ I, yielding

tr(TS) =
∑
i∈I
〈TSei, ei〉 =

∑
i∈I
〈Tfi, S∗fi〉 =

∑
i∈I
〈STfi, fi〉 = tr(ST ).

Finally, if S ∈ B(H), T ∈ T (H) and T = U |T | is the polar decomposition of T , note that the operators
|T |1/2U∗S∗ and |T |1/2 are Hilbert-Schmidt by Proposition B.8. Hence for any �nite subset F of I, the
Cauchy-Schwarz inequality yields∑

i∈F
|〈TSei, ei〉| ≤

∑
i∈F
|〈|T |1/2Sei, |T |1/2Uei〉|

≤
∑
i∈F

∥∥∥|T |1/2Sei∥∥∥∥∥∥|T |1/2Uei∥∥∥
≤

[∑
i∈I

∥∥∥|T |1/2Sei∥∥∥2
]1/2 [∑

i∈F

∥∥∥|T |1/2Uei∥∥∥2
]1/2

= ‖|T |1/2S‖2‖|T |1/2U‖2.

Hence
|tr(TS)| ≤ ‖|T |1/2S‖2‖|T |1/2U‖2 ≤ ‖|T |1/2‖22‖S‖‖U‖ ≤ ‖|T |‖1‖S‖ = ‖T‖1‖S‖,

completing the proof.
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From this it follows that for S ∈ B(H), the map T 7→ tr(ST ) is a linear functional on T (H). This is
not the whole story, though. A consequence of the trace being well-de�ned is that T2(H) can in fact
be equipped with an inner product.

Proposition B.11. For any S, T ∈ T2(H), de�ne

〈S, T 〉2 = tr(T ∗S).

Then 〈·, ·〉2 is an inner product on T2(H), inducing the Hilbert-Schmidt norm.

Proof. 〈·, ·〉2 is well-de�ned, as T ∗S ∈ T (H) for any S, T ∈ T2(H), from Proposition B.8. Linearity
follows from the trace being linear. For any S, T ∈ T2(H), we also have

〈S, T 〉2 = tr(T ∗S) = tr(S∗T ) = 〈T, S〉2

from Proposition B.10. Finally, 〈T, T 〉2 = ‖T‖22 for any T ∈ T2(H) so 〈·, ·〉2 is indeed an inner product
on T2(H) inducing the ‖ · ‖2 norm.

We now expand our knowledge of �nite rank operators a little. We will now race towards a great �nish
concerning the structure of T (H) and T2(H) as normed spaces. It turns out that the norms turn the
spaces into complete ones.

Proposition B.12. Let H be a Hilbert space. Then (T (H), ‖·‖1) is a Banach space and (T2(H), 〈·, ·〉2)
is a Hilbert space.

Proof. Let (ei)i∈I be an orthonormal basis for H. If (Tn)n≥1 is a Cauchy sequence of trace class
operators in ‖ · ‖1, it is in particular a Cauchy sequence in ‖ · ‖ and hence converges to some T ∈ B(H)
under the operator norm. This is our candidate for a limit under ‖ · ‖1. For ε > 0 there exists N ≥ 1
such that ∑

i∈G
〈|Tn − Tm|ei, ei〉 < ε

for all n,m ≥ N and an arbitrary �nite subset G ⊆ I. If Sn → S in norm, then S∗nSn → S∗S in norm
as well, and by approximating the square root function by polynomials on a non-negative interval, we
obtain |Sn| → |S|. Therefore |Tn − Tm| → |Tn − T | in norm for m→∞, so

lim
m→∞

〈|Tn − Tm|ei, ei〉 = 〈|Tn − T |ei, ei〉

for all i ∈ I. Hence ∑
i∈G
〈|Tn − T |ei, ei〉 ≤ ε

for all n ≥ N and �nite subsets G ⊆ I, and hence∑
i∈I
〈|Tn − T |ei, ei〉 ≤ ε

for n ≥ N , so TN − T ∈ T (H). Hence T = TN − (TN − T ) ∈ T (H), and the above inequality yields
convergence of (Tn)n≥1 to T in ‖ · ‖1. Therefore T (H) is a Banach space.

Similarly, if (Tn)n≥1 is a Cauchy sequence of Hilbert-Schmidt operators in ‖ · ‖2, then it is a Cauchy
sequence in ‖ · ‖, converging to some T ∈ B(H) in this norm. For ε > 0, take N ∈ N such that∑

i∈G
‖(Tn − Tm)ei‖2 < ε2

for n,m ≥ N and an arbitrary �nite subset G ⊆ I. As before, this implies∑
i∈I
‖(Tn − T )ei‖2 ≤ ε2

for all n ≥ N , in turn yielding that T is Hilbert-Schmidt, and that ‖Tn − T‖2 → 0. Hence T2(H) is a
Hilbert space.



132 APPENDIX B. TRACE CLASS AND HILBERT-SCHMIDT OPERATORS

The following results are useful facts concerning the relation of �nite rank operators to our two new
operator classes.

Proposition B.13. Recall the elementary operators Eξ,η : H → H given by Eξ,ηω = 〈ω, η〉ξ for ω ∈ H.
We proved on page 31 that these span the set of �nite rank operators on H. It also holds that

(i) E∗ξ,η = Eη,ξ.
(ii) For any T ∈ B(H), we have TEξ,η = ETξ,η and Eξ,ηT = Eξ,T∗η.
(iii) Eξ,η ∈ T (H) with ‖Eξ,η‖1 = ‖ξ‖‖η‖ and trEξ,η = 〈ξ, η〉.

Proof. For ω1, ω2 ∈ H

〈ω1, Eη,ξω2〉 = 〈ω2, ξ〉〈ω1, η〉 = 〈〈ω1, η〉ξ, ω2〉 = 〈Eξ,ηω1, ω2〉,

so (i) holds. (ii) is easily veri�ed. Because Eη,ξEξ,ηω1 = 〈ω1, η〉〈ξ, ξ〉η = ‖ξ‖2Eη,ηω1, we obtain
E∗ξ,ηEξ,η = ‖ξ‖2Eη,η. If η = 0, it is clear that Eξ,η ∈ T (H) with ‖Eξ,η‖1 = ‖ξ‖‖η‖. Assuming from
here onward that η 6= 0, we see that

‖ξ‖2

‖η‖2
E2
η,η = ‖ξ‖2Eη,η = E∗ξ,ηEξ,η,

so |Eξ,η| = ‖ξ‖/‖η‖Eη,η. Hence∑
i∈I
〈|Eξ,η|ei, ei〉 =

‖ξ‖
‖η‖

∑
i∈I
〈Eη,ηei, ei〉 =

‖ξ‖
‖η‖

∑
i∈I
〈ei, η〉〈η, ei〉 =

‖ξ‖
‖η‖

∑
i∈I
|〈η, ei〉|2 =

‖ξ‖
‖η‖
‖η‖2 = ‖ξ‖‖η‖

for any orthonormal basis (ei)i∈I , so Eξ,η ∈ T (H) with ‖Eξ,η‖1 = ‖ξ‖‖η‖. Moreover,

trEξ,η =
∑
i∈I
〈Eξ,ηei, ei〉 =

∑
i∈I
〈〈ei, η〉ξ, ei〉 =

∑
i∈I
〈〈ξ, ei〉ei, η〉 =

〈∑
i∈I
〈ξ, ei〉ei, η

〉
= 〈ξ, η〉.

Hence the proposition follows.

Proposition B.14. Let H be a Hilbert space. Then (T2(H), ‖ · ‖2) contains the �nite rank operators
as a dense subspace, implying that all Hilbert-Schmidt operators are compact.

Proof. Fix an orthonormal basis (ei)i∈I for H. Note that because∑
i∈I
‖Eξ,ηei‖2 ≤ ‖ξ‖2

∑
i∈I
|〈ei, η〉|2 = ‖ξ‖2‖η‖2,

then all �nite rank operators are Hilbert-Schmidt by Proposition B.7. For T ∈ T2(H) and ε > 0, then
since

∑
i∈I ‖Tei‖2 converges, there exists a �nite subset F ⊆ I such that∑

i∈I\F

‖Tei‖2 < ε2.

De�ning Sei = Tei for i ∈ F and Sei = 0 for i /∈ F , we obtain a �nite rank operator S ∈ B(H). Then∑
i∈I
‖(T − S)ei‖2 =

∑
i∈I\F

‖Tei‖2 < ε2.

Hence the �nite rank operators are dense in T2(H). Because ‖ · ‖ ≤ ‖ · ‖2, the inclusion into the
compact operators follows.

Corollary B.15. For any S, T ∈ T2(H) we have tr(ST ) = tr(TS).

Proof. The equation makes sense because of Proposition B.8. As |tr(ST )| = |〈T, S∗〉2| ≤ ‖S‖2‖T‖2,
the map T2(H)× T2(H)→ C given by (S, T ) 7→ tr(ST ) is continuous in both variables, it su�ces by
Proposition B.14 to check the equality for T being �nite rank, but this follows from Propositions B.13
and B.10.
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To the reader, all of these theorems may have seemed like a massive stroke of information overload. We
have de�ned the trace, but have not used its properties yet. Why do we need to know about density of
�nite rank operators in the trace class operators? Is it essential that T (H) is a Banach space? One's
confusion should be laid to rest immediately by looking at the next two theorems, concluding our past
adventures with a colourful and surprising �ourish.

Theorem B.16. Let Φ: T (H)→ B(H)∗ be the linear map de�ned by

Φ(S)(T ) = tr(ST ), S ∈ T (H), T ∈ B(H).

Then for all S ∈ T (H), Φ(S) is ultraweakly continuous, and Ψ is an isometry, i.e. ‖S‖1 = ‖Φ(S)‖
for all S ∈ T (H). Conversely, if ω ∈ B(H)∗, then there is a trace class operator S ∈ T (H) such that
Φ(S) = ω, so Φ is in fact an isometric isomorphism T (H)→ B(H)∗. Moreover, S ∈ T (H) is positive
if and only if Φ(S) is positive.

Proof. First of all, Proposition B.10 tells us that Φ is well-de�ned and linear. Fix an orthonormal
basis (ei)i∈I for H and assume that Tα → T ultraweakly in B(H) and that S ∈ T (H). By writing
S = R1R

∗
2 for two Hilbert-Schmidt operators R1 and R2 by Proposition B.8, then there are only

countably many i ∈ I such that R1ei 6= 0 and R2ei 6= 0. Hence we can de�ne a surjection Ω from
N into {i ∈ I |R1ei 6= 0 or R2ei 6= 0} so that (R1eΩ(n))n≥1 and (R2eΩ(n))n≥1 are square-summable
sequences in H. Since for any A ∈ B(H) we have tr(AR1R

∗
2) = tr(R∗2AR1) by Proposition B.7 and

Corollary B.15, we �nd that

Φ(S)(Tα) = tr(STα) = tr(R∗2TαR1) =
∑
i∈I
〈TαR1ei, R2ei〉 =

∞∑
n=1

〈TαR1eΩ(n), R2eΩ(n)〉

→
∞∑
n=1

〈TR1eΩ(n), R2eΩ(n)〉 =
∑
i∈I
〈TR1ei, R2ei〉 = tr(ST ) = Φ(S)(T ).

Hence Φ(S) ∈ B(H)∗. Moreover, by Proposition B.10 we have ‖Φ(S)‖ ≤ ‖S‖1. If S = U |S| denotes
the polar decomposition of S, then because

Φ(S)(U∗) = tr(U∗S) = tr |S| = ‖S‖1,

we have that Φ is an isometry.

For any ω ∈ B(H)∗ then by Proposition 2.2 we have ω =
∑n
n=1 ωξn,ηn for sequences (ξn)n≥1 and

(ηn)n≥1 of H such that
∑∞
n=1 ‖ξn‖2 <∞ and

∑∞
n=1 ‖ηn‖2 <∞. De�ne

S =

∞∑
n=1

Eξn,ηn ,

which converges in T (H) in the trace norm, as T (H) is a Banach space and

∞∑
n=1

‖Eξn,ηn‖1 =

∞∑
n=1

‖ξn‖‖ηn‖ ≤

( ∞∑
n=1

‖ξn‖2
)1/2( ∞∑

n=1

‖ηn‖2
)1/2

<∞

using Proposition B.13. Then because S 7→ tr(TS), S ∈ T (H) is a bounded linear functional on T (H)
for all T ∈ B(H) by Proposition B.10, it follows that

Φ(S)(T ) = tr(TS) =

∞∑
n=1

tr(TEξn,ηn) =

∞∑
n=1

〈Tξn, ηn〉 = ω(T ), T ∈ B(H),

so that Φ(S) = ω.

Finally, let S ∈ T (H). If S is positive, then for all positive T ∈ B(H), as S1/2 is Hilbert-Schmidt by
Proposition B.8, so

tr(ST ) = tr(S1/2TS1/2) =
∑
i∈I
〈ST 1/2ei, T

1/2ei〉 ≥ 0
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by Corollary B.15. If tr(ST ) ≥ 0 for all positive T ∈ B(H), then because ‖ξ‖2Eξ,ξ = E∗ξ,ξEξ,ξ for all
ξ ∈ H, we see that Eξ,ξ is positive and hence

0 ≤ tr(SEξ,ξ) = 〈Sξ, ξ〉

for all ξ ∈ H. Therefore S is positive.

Just for closure (no pun intended), we include these two side e�ects, falling like dominoes.

Proposition B.17. Let H be a Hilbert space. Any trace class operator is of the form

∞∑
n=1

Eξn,ηn

with the series converging in ‖·‖1 and (ξn)n≥1 and (ηn)n≥1 being sequences such that
∑∞
n=1 ‖ξn‖2 <∞

and
∑∞
n=1 ‖ηn‖2 < ∞. Hence (T (H), ‖ · ‖1) contains the �nite rank operators as a dense subspace,

implying that all trace class operators are compact.

Proof. Let T ∈ T (H). Using the isomorphism Φ: T (H) → B(H)∗ from Theorem B.16, then by
Corollary 2.4 and Proposition 2.2, there are sequences (ξn)n≥1 and (ηn)n≥1 satisfying

∑∞
n=1 ‖ξn‖2 <∞

and
∑∞
n=1 ‖ηn‖2 <∞ such that Φ(T ) =

∑∞
n=1 ωξn,ηn converging in norm. Since T is an isometry and

Φ(Eξn,ηn) = ωξn,ηn for all n ≥ 1, it follows that T =
∑∞
n=1Eξn,ηn with series converging under the

trace norm. Since ‖ · ‖ ≤ ‖ · ‖1, the rest of the statement follows.

Theorem B.18. Let T (H) be the Banach space of trace class operators equipped with the trace norm.
The map Ψ: B(H)→ T (H)∗ given by

Ψ(S)(T ) = tr(ST ), S ∈ B(H), T ∈ T (H)

is an isometric isomorphism. Moreover, Ψ is an ultraweak-to-weak∗ homeomorphism, and S ∈ B(H)
is positive if and only if Ψ(S) ∈ T (H)∗ is positive.

Proof. Let Λ: B(H)→ (B(H)∗)
∗ be the canonical identi�cation of Proposition 2.5 and let

Φ∗ : (B(H)∗)
∗ → T (H)∗

be the adjoint map of Φ. Φ∗ is an isometric isomorphism with (Φ∗)−1 = (Φ−1)∗. Then

Φ∗(Λ(S))(T ) = Λ(S)(Φ(T )) = Φ(T )(S) = tr(ST ) = Ψ(S)(T ),

so Ψ = Φ∗ ◦ Λ. Hence Ψ is an isometric isomorphism. Moreover, since Λ is an ultraweakly-to-weak∗

homeomorphism by Corollary 2.8 and Φ∗ is a weak∗-to-weak∗ homeomorphism, it follows that Ψ is
an ultraweak-to-weak∗ homeomorphism. The last statement can be proved the same way as it was in
Theorem B.16.

2.2 Further properties of the Hilbert-Schmidt norm

In this section, we will introduce the notion of a conjugate Hilbert space and �nd an interesting
connection between the Hilbert-Schmidt operators over a Hilbert space and a Hilbert space tensor
product related to the original Hilbert space.

Let H be a Hilbert space and de�ne a map F : H → H∗ by F (ξ)(η) = 〈η, ξ〉. F is conjugate linear,
and by the Riesz representation theorem it is also a surjective isometry. De�ning ξ = F (ξ) for ξ ∈ H,
we hence obtain a bijective map H → H∗ given by ξ 7→ ξ that satis�es

ξ + η = ξ + η, λξ = λ ξ, ξ, η ∈ H, λ ∈ C. (B.1)

We now de�ne H = {ξ | ξ ∈ H} as a set. The elements of H are then in bijective correspondence with
elements of H, and we give H a vector space structure by

ξ + η = ξ + η, λξ = λξ, ξ, η ∈ H, λ ∈ C.
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The vector space axioms can then be veri�ed by using the equations of (B.1). Finally, H can then be
given an inner product by de�ning

〈ξ, η〉H = 〈η, ξ〉H, ξ, η ∈ H,

so as ‖ξ‖H = ‖ξ‖H for all ξ ∈ H, H becomes a Hilbert space, called the conjugate Hilbert space of H.
The map H → H given by ξ 7→ ξ is thereby a conjugate linear surjective isometry.

For any T ∈ B(H), de�ne T : H → H by T ξ = Tξ. T is then linear and bounded, as ‖T ξ‖H = ‖Tξ‖H
for all ξ ∈ H. Hence the map B(H)→ B(H) given by T 7→ T is an isometry. It is easily checked that
the map is conjugate linear, and moreover, it is surjective, since for any S ∈ B(H), then by letting
G : ξ 7→ ξ denote the conjugate linear inverse of the map ξ 7→ ξ and de�ning Tξ = G(Sξ) for ξ ∈ H,
then T is linear and bounded, and Tξ = Sξ for all ξ ∈ H. Hence the map T 7→ T is a conjugate
linear isometric isomorphism B(H) → B(H). It is in fact also multiplicative and adjoint-preserving,
as T S = TS and

〈T ξ, η〉 = 〈η, Tξ〉 = 〈T ∗η, ξ〉 = 〈ξ, T ∗ η〉, ξ, η ∈ H,

for all S, T ∈ B(H).

Considering the map B(H)→ B(H) given by T 7→ T ∗, one can quickly check that it is linear, isometric
and actually a bijection, since for S ∈ B(H), then by de�ning T ∈ B(H) by Tξ = G(Sξ) for ξ ∈ H we
�nd that T ∗ maps to S, as

〈(T ∗)∗ ξ, η〉 = 〈Tξ, η〉 = 〈Sξ, η〉, ξ, η ∈ H.

Moreover, since S∗ T ∗ = S∗T ∗ = (TS)∗ for all S, T ∈ B(H), T 7→ T ∗ is a linear isometric anti-isomor�
phism.

Since any �nite rank operator on H is of the form
∑n
i=1Eξi,ηi for ξ1, . . . , ξn, η1, . . . , ηn ∈ H, we can

de�ne a unique linear map from the �nite rank operators on H to the inner product space H�H by

n∑
i=1

Eξi,ηi 7→
n∑
i=1

ξi ⊗ ηi.

This map is obviously linear and surjective. Because

E∗ξj ,ηjEξi,ηiω = Eηj ,ξjEξi,ηiω = 〈ω, ηi〉〈ξi, ξj〉ηj = E〈ξi,ξj〉ηj ,ηiω

for all ω ∈ H we have
〈Eξi,ηi , Eξj ,ηj 〉2 = 〈ξi, ξj〉〈ηj , ηi〉.

We then see that∥∥∥∥∥
n∑
i=1

Eξi,ηi

∥∥∥∥∥
2

2

=

n∑
i,j=1

〈Eξi,ηi , Eξj ,ηj 〉2 =

n∑
i,j=1

〈ξi, ξj〉H〈ηi, ηj〉H =

∥∥∥∥∥
n∑
i=1

ξi ⊗ ηi

∥∥∥∥∥
2

.

It follows from Proposition A.1 that the above map extends to a surjective isometric linear map
T2(H)→ H⊗H. We have hence proved the following result:

Proposition B.19. The unique map ρ : T2(H) → H ⊗H satisfying ρ(Eξ,η) = ξ ⊗ η is an isometric
isomorphism.

This isomorphism allows for a simple description of maps over T2(H) in a tensor product language.

Proposition B.20. Let H be a Hilbert space.

(i) The map T2(H)→ T2(H) given by T 7→ T ∗ corresponds to the unique isometry Φ: H⊗H → H⊗H
satisfying Φ(ξ ⊗ η) = η ⊗ ξ.

(ii) Let S ∈ B(H). The maps T2(H) → T2(H) given by T 7→ ST and T 7→ TS correspond to the
maps S ⊗ 1H ⊆ B(H⊗H) and 1H ⊗ S∗ ⊆ B(H⊗H).
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Proof. (i) It is clear from the de�nition of the tensor product and Proposition A.1 that Φ exists and
is unique with the elementary tensor property. As the set of �nite linear combinations of elementary
operators is dense in T2(H), we only need to check that the two maps correspond under the isomorphism
for elementary operators, but this follows from from Proposition B.13(i).

(ii) Let ξ, η ∈ H. As SEξ,η = ESξ,η corresponds to the vector S ⊗ 1H(ξ ⊗ η) and Eξ,ηS = Eξ,S∗η
corresponds to the vector 1H ⊗ S∗(ξ ⊗ η), the statement again follows. We have used Proposition
B.13(ii) for the above identities.

Let S be any subset of B(H) and let S ⊆ B(H) be the image of S under the map T 7→ T , and let ρ
be the conjugate linear and multiplicative inverse of this map. For any given T ∈ S ′, then

T S = TS = ST = S T

for all S ∈ S , so S ′ ⊆ S
′
. On the other hand, let R ∈ S

′
and S ∈ S . As SR = RS, we have

Sρ(R) = ρ(R)S, so ρ(R) ∈ S ′. Hence R ∈ S . Thus we have proved

S ′ = S
′
, S ⊆ B(H).

This implies that for any von Neumann algebra M ⊆ B(H), then M is a von Neumann algebra, as

M
′′

= (M ′)′ = M ′′ = M .

M is called the conjugate von Neumann algebra of M .

We conclude this section with a proof of the Powers-Størmer inequality, needed in Chapter 5.

Proposition B.21 (Powers-Størmer inequality). Let S and T be positive operators in B(H). If S1/2

and T 1/2 are Hilbert-Schmidt operators, then ‖S1/2 − T 1/2‖2 ≤ ‖S − T‖1.

Proof. De�ne two self-adjoint operators A,B ∈ B(H) by A = S1/2 − T 1/2 and B = S1/2 + T 1/2. By
Proposition B.14, A is compact. This yields existence of an orthonormal basis (ei)i∈I for H consisting
of eigenvectors for A with corresponding real eigenvalues (λi)i∈I [32, Theorem 3.2.3]. It is clear that
B ≥ A and B ≥ −A, so |〈Aξ, ξ〉| ≤ 〈Bξ, ξ〉 for all ξ ∈ H, and straight calculation yields that
1
2 (AB+BA) = S−T . Note also that for any self-adjoint operator R ∈ B(H), we have −|R| ≤ R ≤ |R|
by the continuous functional calculus, and hence

−〈|R|ξ, ξ〉 ≤ 〈Rξ, ξ〉 ≤ 〈|R|ξ, ξ〉

or |〈Rξ, ξ〉| ≤ 〈|R|ξ, ξ〉 for any ξ ∈ H. As AB +BA is self-adjoint, we see that

tr |S − T | =
∑
i∈I

1

2
〈|AB +BA|ei, ei〉

≥
∑
i∈I

1

2
|〈(AB +BA)ei, ei〉|

=
∑
i∈I

1

2
|〈Bei, Aei〉+ 〈BAei, ei〉|

=
∑
i∈I

1

2
|λi〈Bei, ei〉+ λi〈Bei, ei〉|

=
∑
i∈I
|λi〈Bei, ei〉|

≥
∑
i∈I
|λi||〈Aei, ei〉| =

∑
i∈I
|λi|2 =

∑
i∈I
|〈A2ei, ei〉| = tr

[
(S1/2 − T 1/2)2

]
,

completing the proof.
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density theorem
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von Neumann, 43

direct sum
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von Neumann algebras, xi

dual mapping, see adjoint map

element
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unitary, iv
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faithful
representation, iv
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GNS representation, viii
GNS triple, see GNS representation

Hermitian
linear functional, 45
linear map, 67

Hilbert space
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approximate, iv

increasing, ix
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Jordan decomposition, 45

K. M. S. condition, 90
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linear functional

dominated, v
positive, v

matrix algebra Mn(A), 10
mean, 91

left invariant, 91
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nondegenerate
representation, 59
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norm
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Hilbert-Schmidt, 128
maximal, 25

137



138 INDEX

minimal, 25
projective tensor norm, 20
submultiplicative, 21
trace, 128

normal
linear functional, 47
linear map, 52

ω∗, 47
ωξ,η, 31
ωξ, 31
operator

elementary, 31, 132
Hilbert-Schmidt, 128
trace class, 126

operator topology
strong, ix
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ultraweak, 29
weak, ix

order relation on the self-adjoint operators, iv

partial isometry, iv
polar decomposition

of operator, iv
ultraweakly continuous linear functional, 52

positive
completely positive map, 67
element, iii
linear functional, v
map, 67
n-positive map, 67

Powers-Størmer inequality, 136
predual, 35

of M ⊗N , 76
projection, iv

central, 36
�nite, 90
map, 81
orthogonal, iv

representation, iv
faithful, iv
nondegenerate, 59
unitary, 88
universal, 59

S(A� B), 22
Sp(A� B), 23

weak∗ topology on Sp(A� B), 23
self-adjoint

element, iii
subset, iii

semidiscrete, 94
separating, 41
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spectrum, iii

square-summable, vi
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∗-automorphism, 88
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unital, iv
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algebraic, 22
tracial, v

Stinespring's representation theorem, 71
submultiplicative, 21
subset

cyclic, 41
separating, 41

support
central, 37
left, 36
right, 36

tensor, 2
elementary, 2

tensor product
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algebraic tensor product of von Neumann

algebras, see M �N
Hilbert spaces, 7
von Neumann algebra, see M ⊗N

⊗-nuclear, 28
Tomiyama's theorem, 82
trace

on positive operators, 126
on trace class operators, 130

tracial state, v

U(A), see unitary
unit, see identity
unitary, iv
unitary representation, 88
unitization, iii
universal property, 1

vector
cyclic, 41
separating, 41

vector state, 31
von Neumann algebra, ix

conjugate, 136
�nite, 90
�xpoint algebra, 89
injective, see injective C∗-algebra
reduced, see MP

semidiscrete, 94
semi�nite, 90
σ-�nite, 57

von Neumann bicommutant theorem, x, 44
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