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Show that GLy,(C) is path-connected and that GLy,(R) has two path-components.

In the case of n =1, GL1(C) is in fact just C\ {0} which is clearly path-connected (e.g. for any two
points in C different from zero, choose a path consisting of a vertical and horizontal line segment, not
necessarily in that order). GL;(R) is R\ {0} which is made up of the two disjoint non-empty open sets
(—00,0) and (0, 00), implying that GL;(R) is disconnected and thus not path-connected; since R\ {0}
is locally path-connected and each of the intervals is connected, these are exactly the path-components
of GL1(R). GL,(R) is not connected for any n € N, since the continuous map det : GL,(R) — R\ {0}
has disconnected image, and therefore GL, (R) has at least two path components.

As the case n = 1 has now been covered, we then turn to the (slightly more exciting) case of n > 2 in
GL,(C). Let A be an invertible n x n matrix with complex entries. Using the Jordan normal form,
there exists an invertible n x n matrix C' and a Jordan block matrix B given by
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fori =1,...,k with k < n, such that A = CBC~!. B is an upper triangular matrix with non-zero

determinant as the diagonal consists of the eigenvalues of A, none of which are 0 (as A is invertible).

Let 0; = By, i = 1,...,n, be the diagonal entries of B in their standard order, and define n paths
vi : [0,1] = C with 4;(0) = 0; and 7;(1) =1, ¢ = 1,...,n, none of the paths passing through 0.

Defining B(t), t € [0, 1], to be the n x n matrix obtained from B by multiplying all the entries above
the diagonal by 1 — ¢ and having diagonal entries B(t);; = ~i(t) for i = 1,...,n, B(t) is clearly
continuous as its entries are continuous functions. Furthermore, since the diagonal entries of B(t) are
non-zero for all ¢ € [0, 1], we obtain that det B(t) # 0 for all ¢ € [0, 1], as it is upper triangular.

Defining A(t) = CB(t)C~! for t € [0,1], we therefore obtain a path of invertible matrices from
A(0) = A to A(1) = CB(1)C~! = CI,C~! = I,. As all points of GL,(C) can be connected to the
identity matrix by a path, we conclude that GL,,(C) is path-connected.

In the case of GL,(R) for n > 2, let GL,(R)" denote the subspace of invertible n x n matrices with
positive determinant, and similarly GL,,(R)~ the ones with negative determinant. Defining a matrix
M by
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we obtain a homeomorphism ¢ : GL,(R)* — GL,(R)~ given by ¢(A) = M A4; it is well-defined as

det MA=det MdetA=—detA <0



for all A € GL,(R)", and it is bijective and continuous with its inverse ¢ ~! given in the same way. If
we show that GL,(R)™ is path-connected, then for any matrices A and B with negative determinant,
there is a path from ¢~!(A) to ¢~1(B), and composing this path with ¢ yields a path from A to
B. Thus GL,(R)™ is path-connected as well, and it then follows that GL,(R) has at most two
path-components, and therefore exactly two.

Therefore, let A be an invertible n X n matrix with real entries and positive determinant. We will
construct paths connecting A to the identity matrix.

By using row operation matrices, we can “change” A into something a little easier to work with. For
i,j € {1,...,n}, i # j, then by defining F;;(\) to be the identity matrix with A at entry (4, j) one
can observe that F;;(A)A is the matrix obtained from A by adding A times the j’th row to the i’th
row. By multiplying A with matrices of the form F;;(t)), t € [0,1], one can obtain a path from A
to an upper triangular matrix A’; indeed, one can just start by applying Fj;(t\) such that the first
column of the resultant matrix has its bottom n — 1 entries equal to 0 for ¢ = 1 (the entries of the first
column cannot all be zero), then the second column to have its bottom n — 2 entries equal to 0 and
so on. This path is contained in GL, (R), as the F;;(\) are all triangular matrices with determinant
1, and therefore det A’ = det A > 0.

Let 0, = A},, i =1,...,n, be the diagonal entries of A’ in their standard order. We must have that
only an even number of the o; are negative. Define n paths v; : [0,1] = R, i = 1,...,n, as follows:
if o, > 0, let v (t) = (1 —t)o; + ¢, and if o; < 0, let v,;(t) = (1 — t)o; — t. For the i such that o; is
positive, v;(t) > 0 for all ¢ € [0,1], and likewise for the i such that o; is negative, v;(t) < 0 for all
t €10,1].

Defining A’(t), t € [0, 1], to be the n x n matrix obtained from A’ by multiplying all the entries above
the diagonal by 1 — ¢ and having diagonal entries A’(t);; = v;(t) for i = 1,...,n, A'(t) is clearly
continuous as its entries are continuous functions. For ¢ € [0,1] then ~;(¢) < 0 for only an even
number of ¢ and we obtain det A’(t) =[]\, 7:(t) > 0, as A’(¢) is upper triangular. Therefore A’(t)
is a path of invertible matrices from A’ to A’(1), a diagonal matrix containing only 1’s and —1’s, the
amount of —1’s being an even number.

Finally, we construct a path from A’(1) to I,,. Let p; be the entry of A’(1) at the place (i,i). If

pi =p; = —1for 1 <¢ < j <mn, then define a rotation matrix
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for t € [0,1] with the Ij, denoting identity matrices. Since det R;;(t) = cos?(tr) + sin®(tr) = 1 for
all t € [0,1], the map ¢t — R;;(t)A’(1), t € [0,1] is a path of invertible matrices from A’(1) to A’(1)
with the —1’s at the places (i,i) and (j, j) changed to 1’s. Since the number of —1’s in A’(1) is even,
we can continue multiplying by these rotation matrices until we finally obtain I,,.

By gluing these paths together, we obtain a path from A to I,,; hence all invertible matrices with real
entries can be connected by a path to I,, and we conclude that GL,(R)" is path-connected.



